
■V

i

I
I
I
I

CO'

THE UNIVERSITY OF MICHIGAN

Technical Report 32

C O N C O M P

August 1970

THE MAD/I MANUAL

■

i

-

.

>D D C
Bruce J. Solas

r^EcaPiinnE ill
Alien L Springer LJ NOV is sn ii

11

Ronald J. Srodawa

--- A •-

i

dj

t

FORMATION SERVICE
hold, Va

"^,ä doCUm^e and sate: ^

distribuüoni^^...

ISJ

UNCLASSIFIED 185

Security CUs«ific«tion

DOCUMENT CONTROL DATA -R&D
mtätSSUiJXmÜS&jAimmmUmS^iLmmlmämmmmLm^ "'' ■■ i i' ^ i-rriomtion ma*f b^- ovarall report :s ctaasiÜeä;

1. ORIGINATING ACTIVITY (Corporate author)

UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

2a. ?£DO.=(ö^iliarm&fSSiF,CAT,ON

2b. GROUP

3. REPORT TITi-E

THE MAD/I MANUAL

*. DESCRIPTIVE NOTtS (Typ" ol report und inclusive c'alea)

Technical Report 32
S. AUTNORIS) (Firal name, middle initial, tarnt name)

Bruce J. Bolas, Allen L. Springer, and Ronald J. Srodawa

!7ä. TOTAL MO. OF PAGES

! 184
4-

6. REPORT DATE

August 1970
76. NO. OF REFS

8«. CONTRACT OR GRANT NO.

DA-49-083 OSA-3050
b. PROJECT NO.

d.

£a. ORIGINATOR'S REPORT NUMBERIS)

Technical Report 32

^_
96. OTHER REPORT NO(S) (Any other numbers that mth be assigned

this report)

10. DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC.

11. SUDPL.EMEKT,iRY NOTES

^t

'.2. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

13. A

Jhitr report contains the description of the MAD/I lariar^uge and
a user's guide for MAD/I in MTS (Michigan Terminal Sy&t£m).

The pre-defined MAD/I language, described in tliis report, is
a procedure-oriented algebraic language designed for general-purpose
use. It is styled after such languages as ALGOL 60, MAD, and PL/I.
MAD/I is also intended as a convenient "base" language for extension
by a definitional facility. The language anticipates the definition
(or re-definition) of: data types and structures, statements, oper-
ators and operations. The definitional facility itself is not de-
scribed.

^ha user's guide shows how to compile and run MAD/I programs
in MTS. Sample runs are included. There is also a description of
a compiler feature which allows assembler code for the IBM 360 to
be compiled within a MAD/I program.

\

DD FORM
I NOV ..1473 Unclassified

Security Classification

Unclassified
gfwrity Cl>i«lflc«tlon

186

14.

KEY WORDS
LINK A

BOLE I WT
LINI

ROLE
am

WT "»lg. -JLL

MAD/I
prograiraning languages
extensible languages
compilers

Security Classification

I
I

THE UNIVERSITY OF MICHIGAN

:

i

1
i
i
1

Technical Report 32

THE MAD/I MANUAL

Bruce J. Solas

Allen L. Springer

Ronald J. Srodaua

CONCOMP: Research in Conversational Use of Computers
F.H. Hestervelt, Project Director

ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

WASHINGTON, D.C.

CONTRACT NO. DA-a9-083 OSA-3050
ARP» Order No. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION, ANN ARBOR

August 1970

Preface

Preface

We use the term "MAD/I" to refer to any of four different
things:

• The MAD/I Project -- a research project conducted at the
University of Michigan Computing Center, and jointly
sponsored by the Computing Center and the university's
CONCOnP Project. (CONCOMP: Research in Conversational Use
of Computers. Supported by the Advanced Research Projects
Agency, Department of Defense, Washington;, D.C.)

• The HAß/I..Facility -- a flexible translator-building facility
which runs on the IBM System/360 computer. Created for the
purpose of building the HAD/I Compiler, the HAD/I Facility
provides for:

(a) The definition of a user-specified programming
language, subject to some constraints on lexicon,
syntax, and interpretation seguence.

(b) The specification in detail of a translation process
for the defined language, using the HAD/I Facility as
a "skeleton" for the translator.

(c) The amalgamation of the translation specification with
the skeleton, to produce a complete translator for the
defined language. In general, the resulting
translator runs on the IBM 360, and directly produces
object modules for the 360. The translator (and hence
the language) can be modified ("extended") at compile
time, producing an "extensible-language" effect.

• Jhe MAfiZI Language — a particular procedure-orienteä
algebraic language, designed for implementation on the
MAD/I Facility. The MAD/I Language is intended to be
useful both as a general-purpose language, and also as a
convenient base or "core" language for extension into
various dialects.

• The MAD/I Compiler — a compiler for the MAD/I Language,
implemented in the MAD/I Facility. To date, the only
version of the MAD/I Compiler runs in MTS (Michigan
Terminal System) and produces object modules for MTS.

This manual is the user's manual for the MAD/I Language and
the MAD/I Compiler. It is intended as a reference manual
(rather than a teaching manual), and assumes that the reader is
already familiar with languages such as PL/I. The MAD/I
Language is described in Part I of this manual, and the Compiler

The MAD/I Manual

i
I
l
I
1

i
l
1
i

i

1
1
1
1.

Preface

is described in Part II. There are also three appendices. The
reader is urged to read Section 1 (Introduction to the Language)
and Appendix A (Syntax Description Notation) first.

For further reference on MAD/I:

D. L. Mills, "The Syntactic Structure of MAD/I", CONCCBf
Technical Report 7, June 1968,

(Presents a formal syntactic description of an earlier
version of the NAD/I Language; also describes the
novel precedence-oriented parsing technigue built into
the MAD/I Facility.)

Allen L. Springer, "Defaults and Block Structure in the
MAD/I Language", CONCOMP Memorandum 31, July 1970.

Ronald J. Srodawa, "An Example Definitional Facility in
MAD/I", CONCOMP Memorandum 32, July 1970.

The work presented here is the result of the combined
efforts of a number of people at the University of Michigan
Computing Center, working at various times over a period of five
years. The principal contributors are acknowledged below.

Professors Bruce H. Arden and Bernard A. Galler were the
project co-ordinators. They participated in the design of the
language, and wrote and edited earlier versions of the manual.

iP Most of the design work, and all of the programming and
I debugging are due to:

Bruce J. Bolas
Charles F. Engle
David L. Mills
Allen L. Springer
Ronald J. Srodawa
Fred G. Swartz

Finally, we should like to express our appreciation to
Professors Robert C. F. Bartels (Director of the Computing
Center) and Franklin H. Westervelt (Director of the CONCOMP
Project), who have supported, encouraged, and sometimes prodded
the MAD/I effort since its inception.

The MAD/I Manual

4 Table of Contents

lable of Contents
•~——■—■———^———————

INTBODUCTION

PART I — DESCRIPTION OF THE MAD/I LANGUAGE

1. Introduction tc tb^ Language
1.1 General Features
1.2 Introductory Examples

I
2. Symbols, Comments, and Spaces (Lexical Structure)

2.0 Introduction
2.1 Formation of Symbols (Lexical Classes)

2.1.1 Alphanumeric Symbols *■
2.1.2 Primed Symbols
2.1.3 Dotted Symbols
2.1.4 Quoted Symbols i.

2.1.U.I Character Symbols
2.1.1.2 Hexadecimal Symbols
2.1.4.3 Pointer-Constant Symbols
2.1.4.4 Entry-Name-Constant Symbols

Unsigned-Integer Symbols
Unsigned-Floating-Point Symbols ^
Special Symbols
Percent Symbols (Internal Compiler Symbols)
At-sign Symbols
Pound Symbols (Compile-Time Symbols)

2.2 Usage of Symbols (Usage Classes)
2.2.1 Identifiers

2.2.1.1 Variables
2.2.1.2 Labels

2.2.2 Constants
2.2.3 Keywords
2.2.4 Operators
2.2.5 Component Names

2.3 Comments and Spaces

2. 5
2. 6
2. 7
2. a

9
2. 10

i

The MAD/I Manual f

iiiwi«iiiw*i

I
I
I
I
I
I
I
I
I
I
1
I
1
1
1
1

3. .2
3. .3
3. .4
3. .5
3. 6
3. 7
3. 8
3. .9
3. 10
3. 11

Table of Contents

3. Attributes
3.0 Introduction
3.1 Mode Attributes

3.1.1 Primitive Modes
3.1.1.1 «INTEGER SHOBT« Mode

•INTEGER LONG« Mode
•FLOATING SHORT' llode
•FLOATING LONG« liode
•PACKED« Mode
•BIT« Mode
«BOOLEAN« Mode
«CHARACTER« Mode
«VARYING CHARACTER« Mode
«FILE NAME« Mode
•TRANSFER POINT« Mode

3.1.2 Structured Modes
3.1.2.1 Array Modes

3.1.2.1.1 «PIXEL ARRAY« Mode
3.1.2.1.2 «VARYING ARRAY' Mode

3.1.2.2 «COMPONENT STRUCTURE« Mode
3.1.2.3 •ALTERNATE« Mode
3.1.2.4 «POINTER» Mode
3.1.2.5 'ENTRY POINT« Mode
3.1.2.6 •ENTRY NAME' Mode

3.2 Storage Layout Attributes
3.2.1 Length Attribute
3.2.2 Alignment Attribute
3.2.3 Dimension Attribute

3.3 Scope Attributes
3.4 Storage Class Attributes

3.4.1 Static Storage Class
3.4.2 Automatic Storage Class
3.4.3 Based Storage Class
3.4.4 Formal Parameter Storage Class

3.5 Attribute Assignment — Introduction
3.6 Explicit Declarations

3.6.1 The 'DECLARE' Statement Form
3.6.2 Inverted Declaration Statement Form
3.6.3 a-Expressions

3.7 Implicit Declarations
3.7.1 Contextual Declarations
3.7.2 Default Declarations

3.8 Attributes of Constants
3.8.1 Unsigned-Integer Symbols
3.8.2 Unsigned-Floating-Point Symbols
3.8.3 Character Symbols
3.8.4 Hexadecimal Symbols

3.9 Attributes of Expressions

The MAD/I Manual

Table of Contents

Expressions
4.0 Basic Concepts
4.1 Priaitive Exptressions
4.2 Operations

4.2.1 Arithmetic Operations
4.2.2 Relational Operations
4.2.3 Boolean Operations
4.2.4 Bit-String Operations
4.2.5 Character-String Operations
4.2.6 Selection Operations
4.2.7 Procedure-Call Operations
4.2.8 Conversion Operations
4.2.9 Assignment Operations
4.2.10 Other Operations

4.3 Operator Precedence and Class
4.4 Syntax of Expressions

5. Statements
5.0 Introduction
5.1 Expression Statements
5.2 »GO TO« Statement
5.3 «IF1 Statement
5.4 'FOB' Statement
5.5 «FOR VALUES' Statement
5.6 «VALUE' Statement
5.7 Procedures

5.7.1 Procedure Definition
5.7.2 Formal Parameters
5.7.3 Procedure Returns

5.8 Input/Output Statements
5.9 Declaration Statements
5.10 «BEGIN» and «BLOCK« Statements
5.11 «PRESET« Statement
5.12 «DECLARE CSECT« and «DECLARE PSECT» Statements
5.13 «ALLOCATE« and «DEALLOCATE« Statements
5.14 «REDIMENSION« Statement

6. Input/Output
6.1 Data Sets, Records, and Files
6.2 Types of Input/Output Activities

6.2.1 Data-directed Transmission
6.2.2 List-directed Transmission
6.2.3 Format-directed Transmission
6.2.4 Unconverted Transmission

6.3 Associating Data Sets with Files
6.3.1 Unit Specification
6.3.2 Data Set Name Specification
6.3.3 Character-string Specification
6.3.4 Entry-name Specification
6.3.5 Default Specification

The MAD/I Manual

., ■•'

Table of Contents

6.(4 Fi.le Attributes
6.4.1 Data Set Associated with the File
6.4.2 End-o£-file File Attribute
6.4.3 End-of-volu«e File Attribute
6.4.4 Error File Attribute
6.4.5 Haxiaua-length File Attribute
6.4.6 Echo File Attribute

6.5 Miscellaneous Input/Output Specifications
6.5.1 Format Specification
6.5.2 Line Specification
6.5.3 Last-line Specification
6.5.4 Last-length Specification

6.6 Input/Output Specification Suaaary
6.7 Data-Lists

6.7.1 Block Elements
6.7.2 Array Expressions
6.7.3 Component-structure Expressions
6.7.4 Unsupported Nodes
6.7.5 Embedded Statements

6.8 Syntax of the Input/Output Statements
6.9 Input/Output Statements

6.9.1 File Specification («OPEN* and 'CLOSE*)
6.9.2 Data-directed I/O
6.9.3 List-directed I/O
6.9.4 Format-directed I/O
6.9.5 Unconverted I/O

7. Program structure
7.1 Block structure
7.2 Scope of Names
7.3 Block Structure at Bun Time

8. Compile-Time Facilities
8.1 «SUBSTITUTE« Statement
8.2 «INCLUDE« Form

9. Definitional Facility

10. Example HAD/I Programs
10.1 Procedures CALLSQHT and SQBT
10.2 Procedures HASHTEST and HASH

PART II — USEB«S GUIDE FOB HAD/I IN HTS

11. The Compiler in Public File «HADI

12. Sample Runs of HAD/I in NTS
12.1 Sample Bun of CALLSQRT and SQRT

The HAD/I Manual

6 Table of Contents

12.2 Sample Run of HASHTEST and HASH
12.3 Sanple Bun of Coabined CALLSQRT and SQBT

13. Error Messages
13.1 Coapile-Time Error Messages
13.2 Run-Ti«e Error Messages

14. Object Module Eescription
14. 1 Representation of Data
1U.2 Control Section Usage
la.3 Register Usage
1U.U Program Linkage Conventions
114.5 Support Routines

15. Assembler Coding Feature
15.1 «ENTEP ASSEMBLER CODE« Statement

15.1.1 Declarations
15.1.2 Assembler Code Format

15.2 Interface Conventions
15.2.1 Entry into the 'ENTER ASSEMBLES CODE* Statement
15.2.2 Exit from the 'ENTER ASSEMBLEB CODE* Statement

i5.3 Examples
15.3.1 Generating a Standard OS Type (I) S Call
15.3.2 Generating a Standard OS Type (I) B Call
15.3.3 Translating Lower-case Characters to Upper Case
15.3.a Converting an Integer to Hexadecimal Characters
15.3.5 Moving an Arbitrary Number of Characters
15.3.6 Reading into a •VARYING CHARACTER* Variable

APPENDICES

Appendix A -- Syntax Description Notation
Appendix B -- Summary of Pre-defined Symbols
Appendix C -- Current Restrictions and Possible Extensions

The MAD/1 Manual

ü

:.

:.

!.

!

ü
:.

..

..

..

..

Introduction

INTRODUCTION

BAD/I was originally conceived in 1965 at the University of
Michigan Computing Center as a relatively simple carry-over of
the MAD language from the IBM 7090 computer to the IBM
System/360, with perhaps a few straightforward extensions. This
goal, however, was later considerably revised. (For information
on the HAD language, refer to: "The Michigan Algorithm Decoder",
Revised Edition, 1966 (out of print); also see: B. H. Ardon,
B. A. Galler, and R. M. Graham, "The MAD Definition Facility",
CSliattiiatiflftg. 2i ikS ACH 12,8 (August 1969), U32-439.)

The CONCOHP Project was formed in December, 1965, to do
extensive research in the conversational use of computers.
CONCOMP needed a general-purpose language suitable for writing
conversational programs, and also wanted facilities for defining
new data types, operations, and statements into the language.
Therefore, CONCOHP strongly supported the development of an
extended MAD language which would serve these needs, and this
became the new goal of the language project. In these early
days, the language was known variously as "HADE", "COHET", or
"HAD/360".

As work on the language and compiler progressed, it
gradually became apparent that it was not feasible to retain
useful compatibility »ith 7090 HAD. Also, the need for a
flexible definitional facility forced the re-examination of
basic concepts about the structure of programming languages.
Eventually it was agreed that the HAD/I project was actually
developing a new language (and compiler) , which would be
independent of HAD.

The goals of the HAO/I project were again re-defined. We
now wanted a langaage-and-compiler system with the following
features:

(A) It should contain a pre-defxned algebraic language, suitable
for conventional general-purpose use without any
definitions from the user.

(B) The language should have a rather general syntax, so that a
variety of new statements and operators might be defined
into the same framework as the pre-defined constructs.

(C) It should contain a powerful definitional facility usable by
a moderately sophisticated programmer. This facility
should allow the user to modify the pre-defined language so
as to satisfy his special requirements. In particular, it
should allow the definition (or re-definition) of:

(1) Data structures and data types.

The HAD/I Hanual

10 Introduction

(2) Statements (including declarations) .

(3) Operators and operations, either in terms of existing
operations, or in terms of an assembler-like language
allowing access to the object machine instruction set,
at the user's option.

(D) The compiler should be reasonably fast, especially when the
program contains no new definitions.

(E) The compiled object program should be reasonably efficient,
although perhaps not highly optimized.

The earlier goal of compiling "conversational" programs was seen
as primarily an operating system problem. This was nicely
fulfilled at Michigan by the development of WTS (Michigan
Terminal System), which also was partly supported by CONCOME.

The goals above have largely been fulfilled, with a few
exceptions. We will discuss them in order:

(A) The pre-defined MAD/I language is a useful general-purpose
language. It has a syntactic structure somewhat like ALGOL
60, but it includes many of the important features of MAD
and PL/I. The MAD/I Compiler has been working since late
1968, and is being used for practical system programming
work. Portions of the compiler itself have been written in
MAD/I.

(B) The syntax rules of MAD/I are sufficiently general to allow
a large "space" of possible definitions. A great variety
of symbols, expressions, and statements is syntactically
possible.

(C) The definitional facility exists, but it is not complete.
The MAD/I language itself is impleuieTited using this "MAD/I
Facility", and one can indeed define new data types,
statements, operators, etc. unfortunately, this facility
is too "low-lpvel", and cannot be used without considerable
study. A user-oriented facility is certainly feasible, but
this reguires more researci. and development.

(D) The compiler is unfortunately not fast. It is large and
very slow, because it constantly re-interprets definitions.
With a little more work, the compiler could be speeded up
by a factor of at least four.

(E) The olject program now produced is reasonably efficient,
although not highly optimized. Even better object code is
possible.

The MAD/I Manual

r. - »^^..«»miiiwiwillWimwWIIWM'MIIIIWi'WllW'. 11»1.! >mmrmtmmim-mmmrwm^^f>mfmm^m^!¥^l>l9^M

i,

..

-.

L

Section 1: Introduction to the Language 11

PAEi' I — DESCRIPTION OF THE MAD/I LANGUAGE

j3ection_.1j.. Tntroduct j.pn tO-t.hg-Längyagg

1.1 General Features

This section briefly mentions some of the principal
concepts and features of the MAD/I language.

In£ui_Form

The language is defined in terms of a continuous seguence
of characters, independent of card format or line boundaries.
The compiler accepts its input as a seguence of records (lines)
which may vary in length. This input is normally treated as

?! completely free-form, and is broken into a seguence of symbols.
Blanks and comments may be used freely between symbols, but most
symbols cannot contain blanks.

Symbols

In MAD/I two concepts have been separated: the form of a
ll symbol (how it is composed of characters) , and the usage of the

symbol (how it functions as a language element). Examples of
symbol forms (called "lexical classes") are:

Alphanumeric symbol (e.g., F A32 BETA)

Primed symbol (e.g., «IF« «TRUE« «END»)

Quoted symbol (e.g., "CHAR-STRING" "00lAa"X)

Unsigned-integer symbol (e.g., 4 003 5140)

Special symbol (e.g., ♦ : , () -•=)

The symbols may be used in any of several ways; example usage
classes are:

Identifier. Usually formed as an alphanumeric symbol, but
the primed symbol 'DEFAULT* is also a pre-defined
identifier.

Keyword. The pre-defined keywords are primed symbols. An
alphanumeric symbol (such as IF or BEGIN) could be
defined as a keyword, but then it could not also be
used as an identifier.

Part I — Description of the WAD/I Language

12 Section 1: Introauction to the Language

Constant. The symbols 307, «TRUE', 18.4E3, and ••?=*♦" are
all constant symbols.

Operator. The symbols + , = , .ABS. , .OR. , := * and **
are pre-defined operators.

Attributes and Declarations

Language items such as identifiers, constants, and
expressions have attributes. Example attributes are:

Mode (e.g., «INTEGER«, «CHARACTER«, «VARYING ARRAY«,
«POINTER«)

Storage layout (e.g.. Length, Alignment, Dimension)

Storage class (e.g.. Static, Automatic, Based)

Attributes of an item may be explicitly declared either in a
declaration statement or by attaching a declaration to any
occurrence of the item in the progranu Declarations may appear
anywhere in the program, and in particular need not precede the
first occurrence of the item. There are also default attributes
for items which are not completely declared. The defaults to be
applied are themselves declarable.

Example declarations:

«INTEGER« I, K, N

«DECLARE« (ALPHA, BETA) «FIXED ARRAY« (50,50) «BOOLEAN«

lö) {« INTEGER«) := Nä («INTEGER«) + 3

•DECLARE« «DEFAULT« «FLOATING LONG«

Expressions

A MAD/I expression is basically similar to an expression in
FORTRAN, MAD, ALGOL, or PL/I, but is slightly more general. The
four expressions

ALPHA , A ^ B , (X-Y)*Z , -XYZ

all have the usual meanings in the pre-defined language.
However, the conventional concepts of "subscripted variable«« and
"assignment statement" are handled as expressions in MAD/I.

For example, if ALPHA is an array name, then ALPHA is
considered a variable, but ALPHA (I) is not a variable; both

Part I -•* Description of the MAD/I Language

mmmm

Section 1: Introduction to the Language 13

ALPHA and ALPHA (I) , however, are expressions (called
"designators"). In "ALPHA (I)" the subscription operation is
implied by the context of the array name expression £0}loved by
the left-parenthesis symbol; it is treated as a convenient way
of writing "ALPHA .TAG. I"r where .TAG. is the operator
denoting subscription.

An assignment such as "AA := BB" is also an expression; its
result is the same as AA , except that the value of AA has been
set to the value of BB. We could compute the maximum value of
AA and BB with the statement:

•IFa (MAX := AA) < BB , MAX := ßB

The concepts of "operator" and "operation" have been
separated. For example, the special symbol + is pre-defined
as an infix operator which, in the contexts of arithmetic
operands, denotes "addition". Addition is a binary (i.e.,
dyadic) operation. The + operator could, however, be defined
to mean something other than addition for other contexts.

Statements

HAD/I statements are roughly similar to those of ALGOL 60
and PL/I. There are five general statement classes: simple
statements, compound statements, prefix statements, list
statements, and declaration statements.

(1) Simple statements. A simple statement is either an
expression or a "statement keyword" (reserved word)
followed by a fixed number of expressions.

A := BCD
•GO TO« LABEL
•ALLOCATE« STRUCT, K*10

(2) Compound statements. A compound statement consists of a
seguence of statements, separated by semicolons, and
bracketed by a statement keyword and an "end keyword".

•BEGIN« B := A; C := D •END^

(3) Prefix statements. A prefix statement consists of a
"prefix" followed by a "scope". The prefix consists of a
statement keyword followed by a fixed number of
expressions. The scope may consist either of one statement
(separated from the prefix by a comma), or of a seguence of
statements separated by semicolons and terminated by an end
keyword (separated from the prefix by a semicolon).

Part I — Description of the MAD/I Language

14 Section 1: Introduction to the Language

•IF« A > 0 , B := A

•IF« A > 0 ; B := A ; C := D «ENDIF'

•FOR' I:=1r1,T>N , G(I) := 0

•FOR« I:=1,1rI>N ;
G(l) := 0 ; H{I) := 1 «ENDFOR»

(t) List statements, A list statement consists of a prefix
followed by a varying number of expressions.

•READ» ('UNIT» 0) # A, B, C

•PRESET' D := 1, F := 3.5, CH := "*♦"

(5) Declaration statements. These have two forms: the •DECLARE'
statement and the "inverted" declaration statements, as
exemplified below.

•DECLARE« AA 'INTEGERS, BB •BOOLEAN',
CC «COMPONENT STRUCTURE^ ('BIT' (8), 'BIT'(2U))

'DCL« (DD, EE, FF) «FLOATING«, GG 'ENTRY NAME«

•INTEGER« II, JJ, XX

«FIXED ARRAY1 Al (5,10), A2(«,U,4)

Statements to be successively executed are written in
sequence, separated by semicolons. Empty statements are
permitted. A statement may be labeled with an identifier,
separated from the statement by a colon.

I := 0;
LBL: «IF« Z(I) -.= 0, «RETURN« I ;

I := I ♦ 1 ; «GO TO« LBL

Jj b e d d-§d_ st a t ementF

Any statement (or sequence of statements) can be made to
produce a result, and can therefore be used as an expression
(i.e., "embedded" in an expression). The 'VALUE' prefix
statement is provided for this purpose. The prefix designates a
variable whose value at the end of the statement is used as the
result of the statement. The «VALUE« statement is enclosed in
parentheses and used as an expression.

SUMSQUARE := («VALUE« S ; S := 0 ; «FOR« I:=1,1rI>N,
S := S ♦ (X(I) - Y(I))**2 «ENDVALUE«)

Part I — Description of the MAD/I Language

i.

:.

..

Section 1: Introduction to the Language 15

Program structure

NAD/I provides a "block structure" much like ALGOL 60 and
PL/I. Each block is either a "compound-statement block" or a
"procedure block". A compound-statement block has the form

•BLOCK« • • • «END1

where the • • • represents an arbitrary sequence of statements.
Procedure blocks have several variations; they typically look
either like

•PROCEDURE' NAME. (PARI,PAR2) ;
• • •

•END PROCEDURE«

or like

•PROCEDURE« FN. (X,Y) := expression

Both kinds oi blocks are statements, and can be used wherever a
statement is valid. Blocks, therefore, may be nested. Block
structure serves to delimit the scopes of declarations and
names. Each block may either have its own default attributes,
or may inherit the defaults of the enclosing block.

A HAD/I program is a block not contained in any other
block. Each source program is separately compiled into its
object program.

Part I — Description of the MAD/I Language

16 Section 1: Introduction to the Language

1.?. JLnt^oductopY Examples

Let us suppose that X and Y are two arbitrary vectors in a
vector space of 3 dimensions, and that we want a procedure which
computes the Euclidean "distance" function between X and Y. The
following program does this; the line numbers at the left margin
are not part of the program.

01 'PROCEDURE« DIST. (XrY) ;
02 'DCL« {X,Y) 'FIXED ARRAY« (3) ;
03 «INTEGER« I;
04 DIST: SUM := 0. ;
C5 «FOR« I := 1, 1, I > 3 ,
06 SUM := SUM ♦ (X(I) - Y(I)) ** 2 ;
07 «RETURN« SCRT. (SUM)
08 «END PROCEDURE«

The program is a procedure block; the procedure statement
begins with the statement keyword «PROCEDURE« and ends with the
end keyword «END PROCEDURE« in line 08.

Line 01 consists of the procedure prefix followed by a
semicolon. The procedure prefix specifies that identifier DIST
names an entry point of the procedure, and that identifiers X
and Y are the formal parameters associated with that entry
point. Since the prefix is followed by a semicolon, the rest of
the «PROCEDURE« statement will be a seguence of statements
terminated by the end keyword «END PROCEDURE*.

Line 02 consists of a «DECLARE« statement followed by a
semicolon. («DECLARE« is abbreviated as «DCL« — many MAD/I
keywords have abbreviations.) The statement specifies that X
and Y are variables of «FIXED ARRAY« mode, and that their values
are arrays of 3 components, numbered from 1 to 3. «FIXED ARRAY«
means that the arrays have fixed dimensions; they cannot be re-
dimensioned at run time. Since the mode of the array components
is not explicitly declared, it is assumed to be the default
mode; since the block contains no declaration for default mode,
the pre-defined default of «FLOATING SHORT« is used. Thus, the
values of X and Y are arrays of 3 floating-point numbers. The
semicolon at the end of line 02 is not part of the «DECLARE«
statement, but separates it from the next statement.

Line 03 contains a declaration statement which specifies
that I is a variable of 'INTEGER* mode. This is called an
"inverted" declaration statement, since it begins with an
attribute keyword instead of 'DECLARE«.

Line 0U contains an "expression statement" labeled by the
identifier DIST; this is the entry point of the procedure. The
statement is an assignment expression, which sets the value of
variable SUM to the floating-point value 0. SUM is not

Part I — Description of the MAD/I Language

—■

:

l

i

:.

i.

Section 1: Introduction to the Language 17

explicitly declared, so it has the default mode «FLOATING
SHORT«.

II
u

u
Line 05 fFOR« I:=1r1fI>3r] has the beginning of a

•FOB* statement, which specifies an iteration. The iteration
variable is I; it is initialized to 1, and is incremented by 1
until the expression I > 3 is true. Since the 'FOR* statement
prefix is followed by a comma, the scope of the iteration will
be a single statement.

Line 06 [SUM := SUM ♦ (X(I) - Y{I)) ** 2 ;] contains an
expression statement, which is the statement repeatedly
executed. The semicolon separates the •FOR' statement and the
'RETURN' statement. The assignment expression increments the
value of SUN by the sguare of the difference of the Ith
components of the two vectors.

Line 07 ['RETURN' SQRT. (SUM)] contains a 'RETURN'
statement. It evaluates the expression SQRT.(SUN) and returns
the resulting value as the result of the OIST procedure. The
identifier SQRT is implicitly declared to be 'ENTRY POINT' mode
by its appearance as a procedure name in the procedure-call
expression; since SQRT is not a label in this program, it is
implicitly declared 'EXTERNAL* as well. Also, a procedure call
on SQRT is assumed to produce a result of default mode. This
program assumes that SQRT is an entry point of a (library)
subroutine that computes the square root of a 'FLOATING SHORT'
value and returns a result of the same mode. NAD/I itself does
not have pre-defined procedures for the elementary functions.

Line 08 ['END PROCEDURE'] contains the 'END PROCEDURE'
keyword which ends the procedure (and the program). He could
also have used the general-purpose end keyword 'END' instead.
Notice that no semicolon is needed between the 'RETURN'
statement and the end keyword. Such a semicolon would do no
harm, however; it would merely introduce an empty statement
between the semicolon and the end keyword.

Part I — Description of the HAD/I Language

k

18 Section 1: Introduction to the Language

As a second example, let us generalize the previous problem
so that X and Y are vectors in a space of N dimensions, and that
N is supplied as an actual parameter (argument) to the
procedure. We could then re-write DIST as follows:

01
02
03
oa
05
06

•PROC« DIST. (N,X,Y) ;
•DCL' (I,N) «I«, (XfY) «FAM*) 'PS'
SUM := 0;
'FOR* I:=1,1,I5N,

SUM := SUM ♦ (X(I)-Y(I)) ♦*2;
•PETUBN' SUM *♦ 0.5 «END»

Line 01 is the same as before, except that 'PROCEDURE* is
abbreviated as 'PROC*, and N is added as a formal parameter.

Line 02 contains a single 'DECLARE1 statement, which uses
abbreviations. It declares that I and N have 'INTEGER LONG'
mode, and that X and Y have 'FIXED ARRAY' mode with 'FLOATING
SHORT' components. The special symbol « specifies that the
array dimensions are to be obtained at run time from the actual
parameters supplied for X and Y.

Line 03 is similar to line 0U before
DIST has been omitted, and the constant
Since DIST is declared in the procedure
point, but DIST does not appear as a la
considered to be at the first executable
"SUM := 0". The constant 0 has 'INTEGER
converted to 'FLOATING SHORT' mode for as
MAD/I compiler reserves the "right" to pe
at compile time.

, except that the label
0 has nc decimal point.

prefix as an entry
bei, the entry point is

statement, which is
LONG' mode, and will be
signment to SON. The
rform such a conversion

Line 04 ['FOR' I:=1,1,I>N,] is the same as before, except
that the iteration proceeds until the value of I exceeds the
value of parameter N. If N is less than 1, then the iteration
scope is never executed.

Line 05 [SUM
before.

SUM* (X(I)-Y(I))**2;] is the same as

Line 06 ['RETURN' SUM ** 0.5 'END'] combines the
functions of lines 07 and 08 before. Instead of explicitly
calling a procedure SQET, the MAD/I exponentiation operation is
used. The 'END' keyword ends the program.

Part I — Description of ..ae MAD/I Language

D
i

:

:

L
U

..

i

y

:

U

Section 1; Introduction to the Language 19

As a third exaaple, we vill re-write the generalized DIST
procedure to use an "eabedded stateient1*:

01 «PHOC« DIST. (NrX,Y) ;
02 «DCL« (1,1) »I«, (X,Y) 'PA' (*) •PS»;
03 DIST: «BETURN' {'VALUK' SÜH := 0. , »POB« I:=1r1fI>M,
0U SÜH := SDH* (X(I)-y (I)) »«Z) ♦♦O.S «END«

Lines 01 and 02 are as before. Lines 03 and 0U contain a
labeled 'RETURN' statement; the expression for the return value
contains a parenthesized 'VALUE' stateaent. The 'VALUE*
statement prefix specifies the variable SUH and sets it to zero;
the 'VALUE* stateaent scope is the 'FOR' statement, which is the
same as before; the result of the stateaent is the value of SUM
after the scope is executed. The 'VALUE' stateaent is enclosed
in parentheses and its value raised to the 0.5 power. The 'END*
keyword ends the prograa as before.

Part I — Description of the HAD/I Language

20 Section 2: Symbols, Coaaents, and Spaces

Soction_2i_Siiboii:1._CoBimEntsx_and_5£ace5 (l£li£dl_l&£«i£tji££i

2.Q lBtt:odactiiq>

A source proqrao in the NAD/I Language is a sequence of
£ilä£I£i££§ "" letters, digits, blanks, and special characters.
A language processor must group successive characters together
into ^yaboi-s, coaaerts, and spaces. The resulting lexical
sequence of symbols constitutes the formal HAD/I prograa, and is
the only portion of the source prograa text that is of interest
to a compiler or interpreter. The coaaents, when included, are
solely for the convenience of huaan readers. Spaces serve to
separate symbols and conaents; they have no other significance.

Because the MAD/I Facility is intended to be flexible, and
because the NAD/I Language design aust allow for "extension" by
thu user, the rules for foraing and recognizing syabols have
been divorced from the uses (interpretations) of the syabols.
For ex .raple, in a typical "fixed" language, an identifier must
bfj formed as an alphanumeric symbol; in NAD/I, however, the user
can cause almost any symbol (e.g., a string of characters
enclosed in quotation marks) to be treated as an identifier.
There are also default interpretations for soae syabol foras;
for example, an alphanumeric syabol not otherwise declared is
treated as an identifier.

2.J.1 Formation_o£_S3:mbols (l^acjcal Clashes)

The rules for grouping characters together into syabols are
embedded in the lexical scanner of the NAD/I Facility; hence,
they are fixed. The lexical scanner recognizes ten general
categories (lexical classes) of syabols, which are listed here
and defined in detail below:

1. Alphanumeric symbols
2. Primed symbols
3. Dotted syabols
U. Quoted syabols
5. unsigned-integer syabols
6. Unsigned-floatinq-point syabols
7. Special symbols
8. Percent symbols
9. At-siqn symbols
10. Pound syabols

Part I — Description of the HAD/I Language

i

I.

..

Section 2: Syibols, Coiaents, and Spaces 21

2*1» 3 AlEharuferic.SyjDbols

An alphanumeric synbol is a sequence of adjacent letters or
digits, the first of which must be a letter,, The "letters'* are
the upper-case characters A,B,...,Z, and the lower-case
characters a,b,...,z. (It should be understood that these are
52 different characters.) The "digits" are the characters
0,1,2,...,9. An alphanumeric symbol must have at least one
character, but no more than 256. Adjacent alphanumeric symbols
must be separated by spaces or comments.

Usual usage: Identifiers
Default interpretation: Identifier

Examples: NADI
X
B90A2
LongerSymbolThanHost

A primed symbol is a sequence of 1 to 251 letters, digits,
or blanks, enclosed in "primes'* (apostrophes, single-quote
marks). All blanks between the primes are ignored, and are not
considered is spaces.

Usual usage: Keywords, Constants

Examples: 'IF*
•GO TO1 , same as •GOTO*
•INTEGBB*
•DEFAULT«
•TRUE«
•MULL FT«

itlA3__<Batte4_5lli2is

A dotted symbol is a seguence of 1 to 25a letters or
digits, the first two of which must be letters, enclosed in dots
(periods). No blanks are permitted within a dotted symbol.

Usual usage: Operators

Examples: .A.

.ASTYFEOF.

.qq3.

Part I — Description of the HAD/I Language

22 Section 2: Symbols, Comments, and Spaces

2UaiL-fliioie^_5iibols

A quoted
enclosed in
symbol can a
immediately
characters, i
written betw
quote (") cha
('"•)• If a
with a quote
space (or c
described bei

symbol
quotat

Iso in
after

ncludin
ggQ th
racter
quoted

or lett
omoient)
ow:

is a s
ion ma
elude

the
q blank
e quot
must be

symbol
er, the

The

equence of zero or more characters
rks (double-quote marks). A quoted
a suffix character (X, P, or E)
closinq quote (see below) . Any

s and special characters, can be
es; however, each occurrence of the
represented by two adjacent quotes
is followed by a symbol which beqins
two symbols must be separated by a
four forms of quoted symbols are

iLtlilsJ Cha£a£tej:_S.ymb2ls

A character symbol is a quoted symbol which has no suffix.

Usual usaqe: Character-strinq constants
Default interpretation: Constant of 'CHARACTER' mode;

Sec. 3.8.3.
see

Examples: "A"
••*♦ Error: IHC999 d 51."
••"im (contains one " character)

^JiJlii Hexadecimal. Symbols

A hexadecimal symbol is a quoted symbol with the suffix
character X . The characters between the quotes are restricted
to the "hexadecimal diqits": 0,1,...,9,A,B#CrD,E,F.

Usual usaqe: Constants
Default interpretation: Constant of 'INTEGER LONG* mode; see

Sec. 3.8.U.

Examples: "A9E"X
"BAD"X
"20O19UO000"X

Part I — Description of the MAD/I Lanquaqe

..

:

..

Section 2: Symbols, Comments, and Spaces 23

2^.1^4^3 Pointer-Constant Symbols

A pointer-constant symbol is a quoted symbol with the
suffix character P . The characters between the quotes
constitute another symbol — the identifier whose storage
assignment will be "pointed to".

Usual usage: Pointer constants

Examples: "ALPHA"F
"SIN"?

^iKJiJ» EntrvjName-Constant Symbols

An entry-name-constant symbol is a quoted symbol with the
suffix character E . The characters between the quotes
constitute another symbol — the identifier (label) of the entry
point to be "pointed to" by the entry-name constant.

usual usage: Entry-name constants

Examples: ,,LAB12"E
"SIN"E

.2.1... 5 Unsigned-Integgr.Symbols

An unsigned-integer symbol is a seguence of decimal digits,
and is considered to be the usual decimal representation of a
non-negative integer. Leading zeros are permitted, but commas
and decimal points are not.

Usual usage: Integer constants
Default interpretation: Constant of «INTEGER LONG' mode; see

Sec. 3.8.1.

Examples: 38
0
00190

2...1..6 Unsigned-FlogL ting-Point, Symbols

An unsigned-floating-point symbol is a seguence of decimal
digits, with either a single decimal point, or an "exponent
part", or both. If the decimal point is written, it may be
placed anywhere in the seguence of digits, and is interpreted
according to the usual rules of decimal notation. The decimal
sequence may be suffixed by an "exponent part", which represents
a multiplier value applied to the decimal number. The exponent
part consists of the character E followed by a decimal

Part I — Description of the MAD/I Language

mmmpiw-waaim

24 Section 2: Symbols, Comments, and Spaces

integer, and represents a multiplier equal to 10 raised to the
power of the decimal integer. The decimal integer nay be
signed.

Usual usage: Floating-Point constants
Default interpretation: Constant of »FLOATING SHORT* mode; see

Sec. 3.8.2.

Examples: 1.57
0.
.1
0.005
10E3

- 2.2E-07
.04E+U8

(= 10 x 103 = 10*)
(= 2.2 x 10-7)
(= .oa x io*«)

2j.li7 SEgSia^-Symbols

The following special symbols are pre-defined in MAD/I;
they all have pre-defined interpretations as punctuation marks
and operators:

(left-parenthesis
) right-parenthesis
, comma
; semicolon
: colon
... ellipsis
pound-sign, number-sign

♦ plus
- minus
♦ asterisk
/ slash
5) at-sign
, dot, period
$ dollar-sign
-i not-sign
8 ampersand
1 vertical bar
= eqial-sign, "equals"
< lest than
> greater than
*♦ double-asterisk, power
• — • colon-equals, assignment. "gets"
-,—. not equal
< = less than or equal
> = greater than or equal
i 1 double-bar, concatenate

Part I -- Description of the MAD/I Language

I
1
I
I
I

Section 2: Symbols, Comments, and Spaces 25

2jLl±8 Percent Symbols

A percent symbol is a percent-sign immediately followed by
a non-empty sequence of letters and digits. Percent symbols are
used extensively in MAD/I as internal compiler symbols.
Compiler-generated identifiers (such as the names of temporary
results) are percent symbols. The programmer should avoid
writing percent symbols unless he is deliberately using the low-
level MAD/I Facility.

Examples: *TMP0007
%A
%MACRO

2A1A9 At-sign Symbols

An at-sign symbol is an at-sign followed by a non-empty
seguence of letters and digits. At-sign symbols, like percent
symbols, ate used in MAD/I for internal compiler symbols. They
are also used as component names (see Sec. 2.2.5). The
programmer should avoid writing at-sign symbols unless he is
writing a component name or deliberately using the low-level
Facility. (Note: the single character a) is a special symbol,
and is not classed as an at-sign symbol.)

Examples: iöCLS
ä)EX2
ö) MODE

2.1,. 10 .Pound^Symbols

A pound symbol is a pound-sign followed by a non-empty
seguence of letters and digits. Pound symbols are intended for
use in the Compile-Time Facility, and are reserved as a class
for that purpose. (Note: the single character # is a special
symbol, and is not classed as a pound symbol.)

Examples: #COüNT
#L12
#BOHS

Part I — Description of the MAD/I Language

I ■ .-

26 Section 2: Symbols, Comments, and Spaces

2. 2 Uggiqe of Symbols lUsaae_ClassesjL

Except for internal compiler symbols and special symbols
which are punctuation marks, the MAD/I symbols can be
categorized into five general usage classes, which are listed
here and discussed in detail below:

1. Identifiers
2. Constants
3. Keywords
U. Operators
5. Component names

An identifier is a symbol used as a name of some data
object such as an integer value, a pointer value, or a portion
of a program. There are two kinds of identifiers: variables and
labels.

There is also a special pre-defined identifier, the primed
symbol 'DEFAULT'. This appears only in declaration statements,
and is used as a controllable "prototype" for the assignment of
default attributes (see Section 3).

2^.2.. .Kl Variables

A variable is an identifier used to name a data object (its
"value"). The essence of a variable is that the particular data
object named is not fixed, but may vary when the object program
is executed ("run time"). For example, if the symbol K is a
variable, it might (at run time) name first an integer value 15,
and later an integer value -77, and still later an integer value
0 . A variable can also name a structured set of values, such
as an array of floating-point values.

We remind the reader that computing machines do not
manipulate abstract objects, such as numbers, directly. Rather,
machines must manipulate concrete representations of such
objects. Thus, when we say that the variable K names the
integer value 15, we always mean that K names a finite
representation of the integer 15, and that this representation
is the value of K. With this distinction understood, we may say
loosely that "K has the value 15", and hope there will te no
confusion.

The computational properties of each variable are
represented by the attributes assigned to the variable. An
example attribute in MAD/I is m5de, which characterizes both the
range of values the variable can name, and the form of a typical

Part I — Description of the MAD/I Language

:

i

■m w

Section 2: Symbols, Comments, and Spaces 27

value. For example, a variable of 'INTEGER LONG* mode can only
name values which are integers encoded (in System/360) as
fullword (32-bit) fixed-point binary numbers. Another example
mode is 'FIXED ABS AY', which specifies that the variable names
an array of values, that the bounds on each dimension of the
array are fixed, that all the values in the array are of the
same mode, and that the values are located at regularly-spaced
intervals in computer storage. In this case an individual value
is designated by writing subsciripts after the variable. For
example, if AS is a variable of 'FIXED ARBAY' mode, then a value
in the array may be designated by an expression such as AR(1)
Notej AR(1) is not a variable, but is an expression called a
designator (see Section 4).

i-sJilsJ labels

A label is an identifier that names a fixed object. Unlike
a variable, the value of a label cannot change at run time;
thus, a label is a kind of constant. Labels are used only to
name statements in programs; each label is written in front of
the statement it names, separated from the statement by a colon
(:). In the pre-defined language, there are only two modes a
label can have: 'TRANSFER POINT' mode and «ENTRY POINT' mode
(see Section 3) .

Part I — Description of the MAD/I Language

.

28 Section 2: Symbols, Comments, and Spaces

2x2*2 Cgnstants

A constant is a symbol (or d-expression — see below) which
denotes a fayed value. The value of each constant is computed
in advance of run time, and may or may not be explicitly
represented in the object module. A constant may have either of
two forms:

("U A single "constant symbol".

Examples: 419
23.7E-3
•TRUE«

(2) A constant followed by the d) symbol followed by
a parenthesized declaration; i.e., an a)-
expression whose left operand is a constant.

Examples: 4193) («INTEGEB SHOBT»)
"4E000000,,Xa («FLOATING SHORT«)
"ABC'S («CHARACTER« (8)) 9) («ALIGN« (8))

The pre-defined constant symbols include:

Unsigned-integer symbols
Unsigned-fIcating-point symbols
Character symbols
Hexadecimal symbols
Pointer-constant symbols
Entry-name-constant symbols
The Boolean constants «TRUE« and «FALSE«
The character constant «NULL C«
The varying-character constant «NULL VC«
The pointer constant 'NULL FT«
The entr/-name constant «NULL EN«

The reader will note that signed constants have not been
mentioned. The application of a + or - prefix symbol to a
constant results in an expression which is not called a
"constant", although it is constant-valued.

(bee. 2.1*5)
(Sec* 2*1.6)
(Sec. 2.1.4.1)
(Sec. 2.1.4.2)
(Sec. 2*1.4.3)
(Sec. 2.1*4.4)

Part I — Description of the MAD/I language

>W'**W91W*3£^^

I
I
I

i

Section 2: Symbols, Comments, and Spaces 29

2A2A3 Keywords

A keyword is a symbol which has been assigned a particular
use in a MAC/I statement form. All keywords, both pre-defined
and user-defined, are reserved symbols. The pre-defined
keywords are all primed symbols, and can be roughly divided into
four informal categories: statement keywords, end keywords,
phrase keywords, and attribute keywords.

Statement keywords are those which begin and identify a
statement form. Each occurrence of a statement keyword is
considered to begin a statement of the form identified by the
keyword (see Section 5).

Examples: 'PROCEDURE'
•IF'
'FOR*
•GO TO«

End keywords are those which end statements. An end
keyword is part of the statement it ends, and is the last symbol
of the statement (see Section 5).

Examples: 'END*
'END PROCEDURE*
'ENDIF'

Phrase keywords are those which separate expressions, or
identify optional expressions, within a larger statement
context. Some phrase keywords are used like commas — to
separate expressions. Others are prefix keywords which combine
with an expression tc form a larger expression (see Section 5}.

Examples: «HITH»
•TO'
•END OF FILE^
•SAVE CODE'

Attyjbute keywords are those which represent attributes,
such as mode and storage class, and are used to declare the
attributes of identifiers and expressions. Attribute keywords
normally appear as suffix or infix keywords within declarations,
but they can also function as statement keywords in the
"inverted" declaration form (see Sections 3 and 5.9).

Examples: 'FLOATING LONG'
'ENTRY POINT'
•NOT NEW
•EXTERNAL«

Part I — Description of the HAD/I Language

30 Section 2: Symbols, Comments, and Spaces
!
I

i^jtU Operators

An operator is a symbol which denotes an operation on data
objects. The same operator may denote a number of different
operations; the appropriate operation for each occurrence of the
operator is determined by the context of that occurrence.

Each occurrence of an operator has one or two adjoining
expressions which denote the operands (data objects) of that
occurrence. Each operator is in exactly one of four syntactic
categories:

A E£g|ix operator is written befQjce its operand
expression.

A £o§l£ix operator is written gfteg its operand
expression

An infix-left operator is written between its operand
expressions; infix-left operators of equal
precedence associate left-to-right (see Section

An infix-£iäht operator is written between its operand
expressions; infix-right operators of equal
precedence associate right-to-left.

Notej. In order to preserve both the above distinction and
traditional notation, two pre-defined symbols get
special treatment: Whenever the minus (-) symbol
appears in the context of a prefix operator, it is
transformed to the negation (.NEC.) operator.
Whenever the plus (♦) symbol appears in the context of
a prefix operator, it is dropped and ignored. Thus,
the plus and minus signs retain their usual dual
roles.

All pre-defined operators are either special symbols or
dotted symbols. They and their associated pre-defined
operations are discussed in Section 4.

Examples: + (infix-left)
-i (prefix)
:= (infix-right)
.ABS. (prefix)
.REH. (infix-left)

Part I — Description of the MAD/I Language

I
I
I
I
I
I
1
i

:

:

Section 2: Syabols, Comments, and Spaces 31

A component name is a symbol used to name (or label) a
component of a structured data object. All component names are
established at compile time, through their use in declarations
of structured variables.

For example, the declaration statement

•DCL' CflPLXN »CS»(AREAL 'FS*, aiHAG 'PS')

declares that CHPLXN is a variable of 'COMPONENT STRUCTURE« mods
(see Sec. 3.1.2.2) with tvo components; each component has
'FLOATING SHORT' mode. Also, the symbols SREAL and dlHAG are
declared to be component names, vhich name (for the variable
CHPLXN) the first and second components respectively. The first
component of CHPLXN can then be designated by the expression
CHPLXN $ SREAL , and the second component by CHPLXN $ aiHAG .

The same component name can be used for different
structured variables, and can name different components of those
variables.

The compiler currently requires that all component names
must be at-sign symbols, in order to distinguish them from
identifiers. This restriction may be relaxed in the future.
Also, the compiler presently allows component names vhich are
at-sign symbols to be written like ordinary subscripts; e.g.,
CHPLXN(»REAL) and CHPLXN(dlHAG).

Part I — Description of the HAD/I Language

...

32 Section 2: Symbols, Comaents, and Spaces

2,3 Cpinegts ap4 Spaces

Any source program text may be enclosed in "coiBent
delimiters" to form a copeent. Comment delimiters are the
character pairs << and >> . Thus, the following is a comment:

«THIS IS A COMMENT.»

Once a left comment delimiter («) is recognized, all characters
after it are considered part of the comment until the first
right comment delimiter (>>) occurs. Comments must not be
nested. Comments may be inserted at any point in the text of
the program except within symbols. They are bypassed in the
initial scan of the text, and they have no effect on the object
program.

Sßaces are sequences of one or more adjacent blank
characters which are not embedded within a symbol or comment.
Spaces are significant in that they will separate symbols which
would otherwise "run together". Blank characters within a
primed symbol, a quoted symbol, or a comment are legal and are
not considered as spaces; blanks cannot be embedded in any other
symbols.

Part I -- Description of the MAD/I Language

Section 3: Attributes 33

SgStign.3 j_ Attributes

3.0 Iptroductjon to Attributes

Attributes are siiiply "significant properties". That is,
the attributes of an item in a HAD/I program are those
properties of the item which are of interest to the language
processor (beyond the purely syntactic properties, which are not
considered attributes). Attributes must be determined by the
language processor, at "compile time", in ocder to produce a
correct translation of the program. The "items" for which
attributes are defined include identifiers, constants, and
expressions, as follows:

Each identifier has attributes that characterize the values
that it names and the scope of the identifier itself. Every
identifier acquires the following attributes:

A mode, which specifies both the possible values of
the identifier and the representation form of a
value. The mode may be either a prim^t^ye mode
or a structured mode. A primitive mode (such as
•BOOLFAN' mode) describes a relatively sitple
data object and reguires no other mode for its
definition. A structured mode (such as
•COMPONENT STRUCTURE« mode) describes a
"structured" object which has components (or
produces results) which have their own modes.

A scopec which is that portion of the program over
which the identifier is uniguely "defined"; i.e.,
that portion in which another occurrence of the
same symbol is another occurirence of the same
identifier.

A storage class, which specifies the manner in which
storage is associated with the identifier.

If the identifier is a variable, then it also acquires at least
two "storage layout" attributes:

A lengthy which specifies the amount of storage
(number of bytes) reguired for a value.

&n alignment (alignment factor), which specifies a
constraint on the position (in storage) of the
storage associated with the identifier.

Storage layout attributes do not apply to labels.

Part I — Description of the MAD/I Language

3U Section 3: Attributes

If the identifier has a structured mode, then that includes
additional attribute information to describe its value; for
example, a fixed array has "dimension", and its components have
a mode.

Each constant has a mode, a length, an alignment, and a
storage class (which is always "STATIC — see Sec. 3.4.1). It
also has a value< of course, but this is not considered an
"attribute".

Each expression has a mode, which is the Bode of its
result. It may also have a storage class and storage layout
attributes.

Most of the attributes are represented in the language by
attribute keywords, which are used in declarations to specify
attributes of items. Some attribute keywords take "suffixes",
which may be optional or reguired, to specify additional
attribute information.

Sections 3.1 to 3.4 below describe the various attributes
themselves in detail. Sections 3.5 to 3.9 describe the various
ways of assigning attributes to identifiers, constants, and
expressions.

Purt I — Description of the MAD/I language

:

!

ii

..

..

I

Section 3: Attributes 35

3j.l llode_ Attributes

Every identifier, constant, and expression acquires a mode
attribute, either by explicit declaration or by implicit
declaration. Each mode characterizes a set of possible values,
and also the form of a value of that mode in computer storage.
In general, the mode of an item strongly affects the treatment
of that item by the operators and statements of the language.

Most modes also carry implied values for the length and
alignment attributes, so that these often need not be explicitly
declared. For examples: 'CHARACTER' mode has an implied
alignment of 1, and 'FLOATING LONG' mode has implied length 8
and implied alignment 8.

There are two classes of modes in MAD/I — primitive modes
and structured modes:

The primitive modes characterize relatively simple data
objects, and are "atomic" in the sense that they require no
other modes for their definition. Host of the primitive modes
(like 'INTEGER SHORT' mode) are intentionally defined as direct
counterparts to the hardware data types of the IBH System/360.

Nflte; This approach allows the MAD/I user strong
control over the machine code produced by the
compiler. Thus, it enhances the usefulness of HAD/I
for writing system programs for the IBH 360. However,
this approach also has the disadvantage that it tends
to make programs machine-dependent and thus less
transferable.

Some of the primitive modes are called "arithmetic" modes. This
simply means that they characterize arithmetic values — i.e.,
representations of numbers — and that some arithmetic
operations (such as addition) have been pre-defined for them.

The structured modes characterize relatively complex
objects which have "components" or "results" for which more mode
information may be required. For example, if an item has 'FIXED
ARRAY' mode, then the mode of the components of the array must
somehow be determined. This can be explicitly declared by a
declaration statement such as

•DECLARE' A 'FIXED ARRAY' (7) 'POINTER' 'BOOLEAN'

which declares that the value of variable A is a fixed array of
7 components, each of which is a 'POINTER' mode value pointing
to an object of 'BOOLEAN' mode. 'FIXED ARRAY' and «POINTER» are
structured modes, while 'BOOLEAN' is a primitive mode.

Part I — Description of the HAD/I Language

36 Section 3: Attributes

Structured modes are also very useful
complex, user-defined modes. This will be
in Section 9.

for creating new,
discussed more fully :

The pre-defined modes are listed below,
detail in the following subsections:

and defined in

^riq^tiye modes;

»INTEGER SHORT« mode
•INTEGEB LONG« mode
•FLOATING SHORT« mode
•FLOATING LONG« mode
«PACKED« mode
«BIT« mode
«BOOLEAN« mode
«CHABACTEF« mode
«VARYING CHARACTER« mode
«FILE NAME« mode
•TRANSFER POINT« mode

3.1.1

3. .1
3. .2
3. 3
3. • U
3. 5
3. .6
3. 7
3. 6
3. 9
3. 10
3. .11

Stguptured modes:

Array modes
«FIXED ARRAY« mode
«VARYING ARRAY« mode

•COMPONENT STRUCTURE« mode
«ALTERNATE« mode
«POINTER« mode
•ENTRY POINTS mode
•ENTRY NAME» mode

3i1i2

3.1.2.1
3.1.2.1.1
3.1.2.1.2
3.1.2.2
3.1.2.3
3.1.2.4
3.1.2.5
3.1.2.6

Fdrt 1 nesctiption of the MAD/I Language

Section 3: Attributes 37

3.1.1 Primitive Modes

IAIAJ-.! 'INTEGER SHOBT* mode

•INTEGER SHORT' mode (abbreviation 'IS') is an arithmetic
mode with integer values ranging from -32768 (-215) to +32767
(2»s-1). It has implied length 2 and implied alignment 2.

3AJils.2 lINTEGER_IfONGl_mode

'INTEGER LONG» mode (abbreviations 'IL', 'INTEGER', 'I') is
an arithmetic mode with integer values ranging from -21U7483648
(-231) to +2117483647 (231-1). It has implied length 4 and
alignment 4.

3.1.1.3 'FLOATING SHORT« mode

'FLOATING SHORT' mode (abbreviations 'FS'r

is an arithmetic mode with signed (+ or
magnitudes range from about 5.4 x 10~79 (1/16 x
7 x 107S ((1-16-*) x 16*3), and with a maximum
hexadecimal digits (about seven decimal digits).
is also included. This mode has implied length
4.

'FLOATING', 'F')
-) values whose
16-**) to about
precision of six

The zero value
4 and alignment

iUJUUi 'FLOATING LONG' mode

•FLOATING LONG' mode (abbreviation 'FL') is an arithmetic
mode with essentially the same range of values as 'FLOATING
SHORT' mode, but with a maximum precision of 14 hexadecimal
digits (about 17 decimal digits). It has implied length 8 and
alignment 8.

iiliJiS 'PACKED' mode

'PACKED' mode is an arithmetic mode with integral values
expressed as signed decimal integers. The attribute keyword
•PACKED' takes an optional suffix of the form (L) , where L
specifies the length attribute, and must be a constant from 1 to
16. If the suffix is omitted, the default length is 1. The
value is 2xL-1 decimal digits, with a sign. An alignment of 1
is implied.

Part I — Description of the MAD/I Language

38 Section 3: Attributes

3.1.1,^ IBITJ_iode

A "BIT1 mode (no abbreviation) value is a fixed-length
string of bits, which can also be treated as an unsigned binary
integer. The attribute keyword 'BIT1 takes an optional suffix
of the form (L) , where L is an integer constant from 1 to 32
which specifies the bit length of the string. If the suffix is
omitted, the default length is 1.

The compiler currently reguires that the storage assigned
to each 'BIT* mode item lie within a single 32-bit word (U bytes
with alignment a); that is, 'BIT' mode storage assignments
cannot overlap word boundaries. Thus, the alignment of a 'BIT*
mode item is determined by two special rules:

(a) If the item is a component of a 'COMPONENT
STPUCTURE', it is aligned to the next available
bit, unless the item will then not fit within
that word, in which case it is aligned to the
first bit in the next word.

(b) In all other cases, the exact alignment is
undefined. For this reason, »BIT* mode items
currently should not be passed as parameters,
except as components of component structure or
array parameters.

i^liJi? lBOOLEANl_niode

•BOOLEAN' mode (abbreviation 'BOOL') has exactly two
values: 'TRUE' and 'FALSE'. It has implied length 1 and
alignment 1.

i-sJilsJ 'CHARACTER' mode

A 'CHASACTEH' mode (abbreviation 'C') value is a fixed-
length string of characters. The attribute keyword takes an
optional suffix of the form (L) , where L is an integer constant
between 1 and 256 which specifies the number of characters in
the string. It the suffix is omitted, the default length is 1.
Since each character reguires one byte of storage, the length
attribute is the same as the character length. The implied
alignment is 1.

Part I — Description of the MAD/I Language

II

..

Section 3: Attributes 39

3.1^.^ lVARYING_CHABACTERj._mode

A «VARYING CHARACTER' mode (abbreviation 'VC«) value is a
varying-length string of characters, together with an integer
value which specifies the current length of the string. The
attribute keyword takes an optional suffix of the form (L) ,
where L is an integer constant from 1 to 32767 which specifies
the maximum string length. If the suffix is omitted, the
default maximum length is 256. At run time, the string value
may be any seguence of characters whose length does not exceed
the maximum length. This includes the "null" string, which has
length zero. The implied alignment is 2, and the implied length
is 2+(the maximum length). The constant symbol 'NULL VC is a
pre-defined constant of this mode; it has maximum length zero,
string length zero, and length attribute 2.

JjJ.s.lsJO lFILE_NAMEi._mode

A value of 'FILE NAHE' mode (no abbreviation) is a set of
specifications for a MAD/I file. It has implied length 4 and
alignment 4. Refer to Section 6 (Input/Output).

BJ.UAJ.U 'TRANSFER POINT' mode

An item of 'TRANSFER POINT' mode (no abbreviation) names a
point in the program which can receive a transfer of control
from elsewhere within the same program, but which does not have
the special properties of an "entry point". 'TRANSFER POINT'
mode is never explicitly declared; instead, identifiers are
contextuaily declared as labels by appearing before a colon in
front of a statement. As long as nothing in the program causes
a label to be declared as 'ENTRY POINT' mode, then it will
receive 'TRANSFER POINT' mode by default. All items of this
mode have »STATIC storage class. Items of 'TRANSFER POINT'
mode cannot be formal parameters, nor can they be passed as
actual parameters.

Part I — Description of the MAD/I Language

40 Section 3: Attributes

i^jK 2 Structured_Modes

Structured modes characterize data objects which involve
other, "subordinate" data objects. Me will use the general term
"subtype" to talk about a subordinate data object (such as a
"component" or "result") of a structured-mode object, unless
otherwise stated, a subtype may be of any mode, including the
structured modes.

2±li.2i.l Array_modes

A value of an array mode ('FIXED ARRAY' or 'VARYING ARRAY')
is an array of one or more component values. An array is a
"homogeneous" structure in that all its components share the
same mode, storage class, and storage layout attributes. The
attribute keyword takes an obligatory suffix — a parenthesized
list of subscript bounds specifications (see Appendix A for
explanation of syntax notation):

array-suffix = (list , bounds)

bounds = [integer ...] integer

integer = [+ I -] unsigned-integer-symbol

If two integers are given, the first one specifies the lowest
value (lower bound) for that subscript position, and the second
specifies the highest value (upper bound). If only one integer
is given, it specifies the upper bound, and the lower bovnd is
assumed to be 1. The upper bound must be greater than or egual
to the lower bound. The number of "bounds" given specifies the
number of dimensions of the array and also the number of
subscripts which must be given to designate a component. This
number, the set of bounds values, and the spacing (in storage)
of components, together constitute the dimension attribute of
the array. Dimension is classed as a "storage layout"
attribute.

The array-suffix may be followed by an optional explicit
declaration of a typical array component. If this is omitted,
the current 'DEFAULT' declaration is copied as an implicit
declaration. The storage class of a component cannot be
declared; it is always the same as the storage class of the
array.

Example

'DECLARE' A 'FIXED ARRAY'(10,-2...5) 'CHARACTER'(5)

declares that variable A names a two-dimensional array with 10
"rows" (first subscript) numbered from 1 to 10, and 8 "columns"

Patt I -- Doocription of t^e ^AD/I Language

!J

LI

..

Section 3: Attributes 41

(last subscript) numbered from -2 to 5. The array has 10 x 8 =
80 components, each of which is a fixed-length string of 5
characters.

The components of an array are assigned storage at
regularly-spaced intervals. The minimum distance from the
beginning of one component to the beginning of the next is the
"aligned length" of a component, which is computed as the length
of the component, extended as needed to satisfy the alignment of
the next component. Along each dimension (subscript position)
of an array, the successive components have the same spacing,
which is always a multiple of the aligned length. The default
alignment of an array is the same as the alignment of its
components.

When the components of an array must be treated in serial
Li order (^s in storage assignment or in I/O transmission), some

sort of sequencing rule" must be employed. The default array
sequencing rule is called row-malor order, and is the order
produced by varying each subscript from its lower bound to its
upper bound, the last subscript varying first, then the next-to-
last, etc., until all combinations have been produced. For
example, if we have declared A «FIXED ARRAy« (-1...1,2#0...2) ,
then row-major order gives the sequence: A (-1,1,0), A (-1,1,1),
A(-1,1,2), A(-1,2,0), A(-1,2,1), A(-1,2,2), A(0,1,0), A(0,1,1),
— , A(0,2,2), A(1,1,0), —, A(1r2/2) .

IsJ-t2.J.J 'FIXED ABRAY1 mode

•FIXED ARRAY' mode (abbreviation 'FA') characterizes arrays
whose dimension attributes are permanently fixed at compile
time. That is, the number of dimensions, the subscript bounds,
and the spacing of components are all declared just once, and
cannot vary at run time. The MAD/I translator can take
advantage of this ittvariance to make operations on fixed arrays
more efficient than the same operations on varying arrays.

3I.1JL2J.1J2 'VARYING ARRAY' mode

•VARYING ARRAY' (abbreviation 'VA') characterizes arrays
whose dimension attributes can vary at run time. The number of
dimensions of a varying array is fixed, but the subscript bounds
and the spacing of components can be varied dynamically with the
•REDIMENSION' statement (see Section S.IU). The dimension
attribute declared in the program controls both the storage
allocated to the array, and also the interpretation of any
•PRESET' assignments into the array. The re-dimension operation
will not vary the location or size of the storage allocated to
the array. For such arrays the declared dimensions should be
large enough to accommodate the maximum-size array anticipated.

Part I — Description of the WAD/I Language

•mm

42 Section 3: Attributes

i-sJ-tUI 'COqFONENT STRUCTURE1 mode

A value of «COMPONENT STRUCTURE1 mode (abbreviation 'CS')
is a structure of component values which may be of different
modes. Thus, a component structure is a "non-homogeneous"
structure, in that its components need not all share the same
mode and storage layout attributes. A component structure is a
single compact data object in storage, so all its components do
share the same storage class attribute. The attribute keyword
takes an obligatory suffix -- a parenthesized list of component
declarations:

cs-suffix = (list , component-decln)

component-decln =
f component-name] declaration-string

Each component-decln declares one component, which may have any
mode, primitive or structured (except «TRANSFER POINT» and
•ENTPY POINT* modes), as specified by the declaration-string.
If a component-name (see Sec. 2.2.5) is given, then its
interpretation for the particular component structure is a name
for the component being declared. If the declaration-string is
empty, then the current 'DEFAULT' declaration applies to that
component.

For example, the declaration statement

•DCL» AGG 'CS* ('BIT'(8), 'INTEGERSHORT«, 'POINTER')

declares that AGG is a variable of 'COHPONENT STRUCTURE' mode,
with three unnamed components. The first component has 'BIT*
mode, the second has 'INTEGER SHORT' mode, and the third has
'POINTER' mode. Since the components are not named, they can be
designated only by their ordinal position; e.g., the second
component must be designated by the expression AGG(2) .

As another exaitiple, the declaration

•DCL' VCHAR 'CS' ('IS', dlNG «IS«, OCHS 'FA'(50)'C')

declares that variable VCHAR is a component structure with three
components: two of 'INTEGER SHORT* mode, and one »FIXED ARRAY*
whose components are single characters. The first component can
only be designated as VCHAR (1) ; the second as either VCHAR (2)
or VCHARSdLNC ; the third as either VCHAR(3) or VCHAR$dCHS .
The Ith character ot the chi^d component jay be designated as
either VCHAR(3)(I) or VCHAI>$dCHS (I) .

The componcr.ts < f a compontnt structure have the same
oraerinq in storage as in the structure declaration. Each
coaiponent is positioned arter the preceding component, with the

Part I -- L scr^ption of the MAD/I Language

I
I
I

I

..

..

..

:

-

Section 3: Attributes 43

BiniBuin qap neo'led to satisfy its alignment attribute. The
default alignment of the structure is the maximum of the
individual component alignment attributes. The default length
of the structure is the minimum length needed to contain all the
aligned components.

la .lii i^jliljmiE—is de
A value of 'AITEENATE' mode (abbreviation 'ALT') is similar

to a component structure (Sec. 3.1.2.2), except that the
"components" aie actually alternative interpretations of the
value itself. It is equivalent to a component structure in
which the components all overlap each other, instead of being
disjoint. The attribute keyword takes the same form of
obligatory suffix, a cs-suffix.

For example, the declaration statement

•DCL« WHAT •ALTEBNATE* (•INTEGER«,'FLOATING«)

declares that variable WHAT has «ALTERNATE* mode, with two
interpretations: WHATfl) has «INTEGER« mode, and WHAT (2) has
«FLOATING« mode. We could also have used named components.

The value of an «ALTERNATE« mode item has only one
component mode at a time, and it is the programmer« s
responsibility to know which it is at any given point in the
program. Dynamic mode testing is not provided.

The alignment of the "structure" is the maximum of its
component Alignments, and its length is the maximum of its
component lengths.

Part I — Description of the HAD/I Language

14 Section 3: Attributes

.L.:U2:!.a__lPQljilEIl_10de

A value of »POlHTEB* «ode (abbreviation 'PT') is a fifiifitgr
to another value. A "pointer" is the HAD/I counterpart of a
computer storage address, but is not necessarily iipleaented as
a simple address. The attribute keyword takes an optional
suffix, which must be a declaration-string, to describe the
value pointed to. If the suffix is omitted, the usual default
is not applied; rather, the value pointed to is considered as
"not declared". •POINTER' mode has implied length 4 and
alignment U.

Examples:

•DCL« PI •POINTER« »INTECER«

declares variable Pi to have »POINTER' mode, with values that
point to values of 'INTEGER' mode.

'DCL' P2 'PT' 'PT'

declares that the value of P2 is a pointer to a pointer to a
"not declared" value.

This mode has a pre-defined constant, 'NULL PT' , whose
value is a "null" pointer; it does not point to a value. Other
pointer constants may be defined as described in Secti.cns
2.1.«. 3 and 4.2.10.

Part i — Doicrj.rtion ot tne JUD/I Language

I
I
I
I
I

1
j

1
I
I

L

-u

'■

■
mm

I

•

Section 3: Attributes US

itliiiS 'ENTRY POINT* »ode

An itea of 'ENTRY POINT* node (abbreviation 'EP') naaes a
point in some prograa which can receive a transfer of control,
and which has the special properties of an "entry point**
described below. The attribute keyword takes an optional
suffix, which aust be a declaration-string, to describe the
value produced as a result of "calling** the designated entry
point. If the suffix is omitted, the 'DEFAULT* declaration is
applied. Every entry point has the following properties:

(1) It can receive either "go to" or "call" transfers of
control.

(2) It can receive transfers ("call" or "go to") from
external procedures as well as procedures within the
sane progras.

As a consequence, an entry point is lore "expensive" than an
ordinary transfer point, since it aust perform whatever rituals
are required by program linkaqe conventions. Also, some entry
points take parameters, whereas transfer points cannot.

An item may be declared 'ENTRY POINT* in several ways:

(1) Explicitly, with the »ENTRY POINT* keyword.

(2) Contextually, as an identifier in a procedure-prefix.
For example,

•PROCEDURE' F. (X) , G. (Y,Z)

contextually declares F and G as «ENTRY POINT* .

(3) Implicitly, as a label which is declared * ACCESSIBLE* .

I. (U) Contextually, as an identifier G which occurs in either
the context G.(—) or the context "G"E , and has not
been explicitly declared in the block containing the
occurrence. In this case, if G is not a label in the
program, it is contextually declared 'EXTERNAL* as
well.

Any ectry point declared only contextually is assumed to produce
result values of default mode.

An item declared 'ENTRY POINT* must be an identifier.
Thus, structured values cannot have cumponents or results of
ENTRY POINT mode. Also, every entry point must have 'STATIC
storage class.

Part I — Description of the HAD/I Language

U6 Section 3: Attributes

A value of «ENTFY NAME» mode (abbreviation •EN«) is a
pointer to an entry point, together with additional information
to determine an environment for the entry point. The attribute
keyword takes an optional suffix, which must be a declaration-
string, to describe the value produced as a result of calling
the entry point pointed to. If the suffix is omitted, the
•DEFAULT1 declaration is applied.

Items of «ENTRY
expressions. (Note

NAME»
that

mode can be constants, variables, or
•TRAJISFEB POINT« and «ENTRY POINT«

modes do not have variables.)
constant, «NULL EN« , whose
does not specify an entry point
name constants may be defined
and 4.2.10. Their values point
carry environment information;
is used.

This mode has a pre-defined
value is a "null'« entry name; it
or an environment. Other entry
as described in Sections 2. 1.4.t(
to entry points, but they do nQt
this is filled in when the value

Unlike entry points, entry names are not restricted to
static storage class. Also, entry names may be passed as actual
parameters to procedures, and may be used in «EETURN TO«
statements.

Part I -- Description of the MAD/I language

..

..

Section 3: Attributes 47

3.2 Storage Layout Attributes

Storage layout attributes are applicable to items which are
variables, constants, or expressions. These attributes
determine both the amount of storage allocated to an item, and
the arrangement of the item's value in the allocated storage.

^•.2^2 ifiJl£tii_att£i^ute

The "length" attribute of an item specifies the amount of
storage allocated to that item. The attribute keyword •LENGTH«
takes an obligatory suffix of the form (L) , where L is a non-
negative integer constant which specifies the length in bytes.
The length attribute is taken as the maximum of the value of L
and the implied length (if any) implied by other attributes of
the item.

For example, 'INTEGER LONG* mode has an implied length of U
bytes. The declaration statement:

•DECLARE1 A 'INTEGER»,
B «LINGTJP (2) 'INTEGERS,
C «LENGTH^ (6) «INTEGER'

would cause variables A, B, and C to receive length attributes
of 4, U, and 6 bytes, respectively.

For those modes whose keywords do not take "length"
suffixes, a declaration of the length attribute has no effect on
the yalye of the item, but only allows extra storage to be
allocated. In the above example, variable C will get six bytes
of storage, but its values will still be the U-byte integers of
•INTEGER' mode.

3..2..2 liianieiit_ätt£ibutg

The alignment attribute of an item specifies a constraint
on the positioning of its allocated storage. The attribute
keyword 'ALIGN' takes an obligatory suffix of the form (A) ,
where A is an integer constant which specifies the "alignment
factor" for the desired alignment. The only valid values for A
are 1, 2, 4, and 8. The alignment attribute for the item is
taken as the m^xijium of the value of A and the alignment (if
any) implied by other attributes of the item. The values 1, 2,
U, and 8 correspond to byte, halfword, fullword, and doubleword
alignments, respectively.

Part I — Description of the HAD/I Language

48 Section 3: Attributes

For exanple, the declaration

•DCL« HH 'ALIGN' (**) •CHABACTEi« (8)

gives variable HH an alignment of U.

2J.1*.2 £iiensi2n_ at. tribute

The dimension attribute applies only to items of array
modes (see Sec. 3.1.2.1), and specifies the number of dimensions
of the array, the subscript bounds for each dimension, and the
spacing (in storage) of the couponents along each dimension.
This attribute does not have ita own keyword, but is declared as
part of the mode declaration.

Part I -- Description or the MAD/I Language

I
1
1
1
I

Section 3: Attributes 49

3« 3 Scope Attributes

Unlike the other attributes discussed so far, scope
attributes are concerned with naaes rather than values. Scope
attributes apply only to names which are identifiers, and
represent properties of the identifier itself. Scope attributes
are closely related to the block structure of programs, and to
the "renaming convention" which allows the use of the same
symbol as different names in different contexts. These concepts
are discussed in Section 7,

There are two scope attributes: "scope" and "owner",
I defined loosely as follows:

The scope of a name is that portion of a program (or set of
programs) in which the name is uniguely "known". The scope of a
name always includes the program text internal to the block in
which the name is declared (explicitly or implicitly), and
always excludes the scope of any other name represented by the
same symbol.

The owner of a name is that block which provides the
storage associated with the name. This is significant for
external names, whose scopes extend to more than one program.

Neither of the scope attributes has a direct attribute
keyword. Instead, HAD/I has a combination of language
conventions and scope-controlling keywords, which allow the user
precise control of these attributes. The keywords are: •NiH1,
•NOTNEW«, •GLOBAL», •EXTERNAL«, and 'ACCESSIBLE'; they are
applied like ordinary attribute keywords, and are described
below.

When a name is explicitly declared, it is normally
considered to be "new" to the "current block" (tne smallest
block enclosing the declaration). It is thus a new name, its

— scope is limited to the current block, and the current block is
its owner. But this is not always true for contextual
declarations; see Sec. 3.7.1.

•NOTNEW specifies that the name declared is no^ new tc the
current block. This keyword causes the scope and ownership of
the name to be extended to the next outer block, as though all
declarations for that name (except the 'NOTNEW1 declaration) in
the current block were written in the next outer block instead.

'GLOBAL' specifies " 'NOTNEW all the way out". A name
declared 'GLOBAL' has its scope extended out to all blocks
containing the declaration, in the same manner as for 'NOTNEU*.

If 'NOTNEW or 'NEW is declared for the special identifier
'DEFAULT', the declaration affects not the scope of 'DEFAULT'

Part I — Description of the MAD/I Language

50 Section 3: Attributes

itself, but rather all names in the current block which are used
but not explicitly or contextually declared. Such names require
a default assumption about their scope, and this is controlled
by «DEFAULT*. If 'DEFAULT« is declared •NEW« in the current
block, then such names are considered new to the block; if
•DEFAULT» is declared •NOTNEM«, then such names are not
considered new to the block, and thus are known in the next
outer block. If neither «NEW« nor •NOTNEH« is declared for
• DEFAULT«, the action is as if »NOTNEH« were declared.

«FXTERNAL« (abbreviation «EXT«) specifies that the name is
an «'external name", that it has static storage class, and that
its owner is not in the current program (the program containing
the «EXTERNAL* declaration). The scope of the name is extended
from the current block to outside the program.

•ACCESSIBLE' (abbreviation 'ACC') specifies that the name
is an external name, that it has static storage class, and that
its owner is in the current program. The scope of the name is
extended from the current block to outside the program. The
same naae aust not also be declared «EXTERNAL« in the Some
program, since this would cause conflicting declarations of its
owner.

If two or mote external names ar« represented by the sune
symbol, they are considered as one name whose scope is the union
of the individual scopes. This rule is applied when programs
are linked together, and allows the scope of a name to extend to
multiple programs. Ultimately, at run time, some program must
be the unique owner of the name.

In a 'PROCEDURE' block, the names of all entry points arc
contextually declared 'NOTNEW, so that the entry points are
known outside the procedure itself. If the procedure is the
outermost block, these names are contextually declared
•ACCESSIBLE', and thus become external names.

Tart I — Cescnption of t ie MAD/I Language

Secticm 3: Attributes 51

3..Ü Storage_Class Attributes

Every identifier, constant, and expression has exactly one
storage class attribute, which specifies the manner in which
storage is associated with the item. The storage class may be
declared either explicitly or implicitly.

When an item is associated with storage, then we say that
storage is allqcated for the item. The storage may be allocated
either "statically" (before run time) or "dynamically" (during
run time). Since storage is used primarily to contain values,
the value of an item is not defined unless storage is allocated
for the item.

The storage classes are: static, automatic, based, and
formal parameter. The default storage class is static.

2j.ä.j.l gtaticstorage class

This attribute has the keyword 'STATIC1. It specifies that
storage for the declared item is allocated before run time, and
cannot be de-allocated or re-allocated during run time.

Static storage class is reguired for external names, and is
therefore explicitly declared by the 'EXTERNAL' and 'ACCESSIBLE'
keywords.

3Aa±2 Automatic storage class

This attribute nas the keyword 'AöTOMATIC. It specifies
that storage for the declared item is allocated during run time,
whenerer the block which owns the item is activated. The
storage is de-allocated when the block is terminated. During
the block activation, the storage cannot be re-allocated.

3.U.3 Based storage class

This attribute has the keyword 'BASED'. It specifies that
storage for the declared item is dynamically allocated and de-
allocated during run time, under explicit control ot the
program. Storage for based variables may be allocated and de-
allocated in either of two ways:

(1) With the .ALLOC, operator and a pointer-valued expression.
(See Section •».)

(2) With the 'ALLOCATE' and 'DEALLOCATE' statements. (See
Sec. 5.13.)

Part I — Description of the MAD/I Language

52 Section 3: Attributes

j^Ü^Ü Forgaj. .parametgr storage .clagg

This attribute has no keyword. Instead, it is contextually
declared for variables which appear as "formal parameters,, in
procedure prefixes (see Sec. 5.7). Formal parameter storage
class is a consequence of the "call by reference" convention of
MAD/I. It specifies that storage for the declared item is
dynamically allocated when the formal parameter is "bound" to
its corresponding actual parameter (argument). This "binding"
occurs whenever the procedure is activated through an entry
point for which the fomial parameter is declared. See Section
5.7 for more information.

Part -- DescLiption of tiie MAD/I Lan^uagt

mm

.

.

Section 3: Attributes 53

3.5 AttribU-tg^AgsigniSegt ". IStgP'lagti0!1

Sections 3.5 to 3.9 describe declarations, which specify
attributes of items. The items declared may be identifiers,
constants, or expressions.

Declarations may be explicitly written by the programmer;
these are called ex£licit declarations. Also, the language
processor may MinferM attributes which have not been explicitly
indicated, but which are JtiElied by the program and the rules of
the language; the inference of an implied attribute is called an
implicit declaration.

Implicit declarations may arise in two ways, by "context"
or by "default":

The appearance of an item in a certain context can
constitute a contextual declaration for the item.

If an item lacks some necessary attribute, which has teen
neither explicitly nor contextually declared, then it may
receive a "default" attribute by default declaration.

A declaration may have either "unconditional" or
"conditional" effect; that is, its application to the item may
be unconditional, or may depend upon the absence of prior
declarations. In general, explicit declarations are all
unconditional, default declarations are all conditional, and
contextual declarations can be either. For each item in the
program, its attributes are assigned in the following order:

(1) Assign attributes specified unconditionally. These
attributes must not conflict; if they do, it is an
error. '

(2) Assign attributes specified conditionally by contextual
declarations, wherever their conditions are satisfied.

(3) Assign default attributes, wherever needed.

Constants and expressions normally do not require explicit
declarations, since a constant gets default attributes
determined by its lexical class, and an expression gets default
attributes determined by its operator and operands. However,
the programmer car explicitly control each constant with the S
operator and each expression with the .ASTYPE. and
.ASTYPEOF. operators described in Section 3.9.

The default attributes for variables can differ from block
to block. They are themselves declarable (See Sec. 3.7.2).

Part I — Description of the MAD/I Language

5a Section 3: Attributes

ja6 Expljcjt Declarations

There are three forms of explicit declarations:

(1) The «DECLARE' stateaent fora.
(2) The Minverted" declaration stateaent fora.
(3) The a-expression fora.

The three forms are closely related; they are siaply alternative
ways of writinq declarations. Therefore, auch of the syntax of
(explicit) declarations is coaaon to all three foras. This
syntax is described below, both in prose and in syntax notation.
More information on a)-class operators will be found in Section
4.2; the «DECLARE« and «DECLARE DEFAULT» stateaents are also
treated in Section 5.9.

Every explicit declaration requires: an occurrence of the
itea beinq declared, and a "declaration strinq" of attribute
keywords and their suffixes. We will defer, for the aoaent, the
declaration of items which are constants or expressions, and
focus on the declaration of identifiers. The identifiers to be
declared by a qiven declaration strinq are written as an
'«identifier list'«, which may be either a single identifier, or a
parentnesized list of identifiers:

identifier-iist = identifier | (li§t , identifier)

Examples: A
(B,C,EETA)
(X)

The declaration string will be applied individually to each
identifier in the list.

A '«declaration string*« (decla-string) is a sequence of
attribute keywords ana their suffixes. The sequence is
interpreted froa left-to-right, and there is a restriction on
the ordering of the keywords: any keyword which appears a^ter a
structured-mode keyword applies to a "subtype««, and aust be
leqal for that usage. (Me will use the general ters «'sufatype"
to talk akout a subordinate data object (such as a coaponent) of
a structured aode.) Each keyword, together with whatever suffix
it has, specifies a "declaration" about the identifier or a
subtype. At most one mode declaration aay appear for the
identifier itself.

art I - Lt scripticn of ^hf KAL/I Languacje

Section 3: Attributes 55

Syntax of decln-string:

decln-string = [li§i non-node-decln] [node-decln]

non-mode-decln = scope-decin | storage-class-decln
| storage-layout-decln

scope-decln - • NEW« | •MOTMEH* | 'GLOBAL*
| EXTEBMAL* | 'ACCESSIBLE*

storage-class-decln * «STATIC | 'AUTOMATIC | 'BASED'

storage-layout-decln = 'LENGTH' (integer)
| 'ALIGN' (integer)

integer = [♦ I -] unsigned-integer-syibol

■ode-decln ■ primitive-node-decln | structured-aode-decln

priaitive-mode-decln =
'INTEGER SHORT' | 'INTEGER LONG'
| 'FLOATING SHORT' | 'FLOATING LONG'
| 'PACKED' [(integer)]
I 'BIT* f (integer)]
| 'BOOLEAN'
I 'CHARACTER' [(integer)]
| 'VARYING CHARACTER' [(integer)]
I 'FILE NAME'

structured-Bode-decln =
'FIXED ARRAY' (üsi , bounds) subtype-decln
I 'VARYING ARRAY' (list , bounds) subtype-decln
I 'COMPONENT STRUCTURE'" (ü§t f coBDonent-decln)
| 'AITERNATE* (list , coaponent-decln)
I * POINTER* Tsubtype-decln]
I *ENTRY POINT* subtype-decln
| *ENTRY NAME* subtype-decln

bounds ■ [integer ...] integer

subtype-decln ■ [list storage-layout-decln] [node-decln]

coBponent-dccln = [coBponent-name] subtype-decln

Exaaples of decln-string:

(a) *INTEGER SHORT*
(b) «PACKED* (7)
(C) *EXTERNAL*
(d) 'BASED' 'ALIGN' (8)
(6) 'NOTNEM' 'CHARACTER'
(f) 'FIXED ARRAY* (20)

Part I — Description of the MAD/I Language

' '':■■.'

•

56

(g)
(h)
(i)

Section 3: Attributes

•FIXED ABRAY« (5,10) »LENGTH« (*) »BIT» (J«) ^ a 1
•BASED« -ALTEBIIAiE' (•IBTEGEB», • POIBTBB« «BOOL-)
•JILIGM1 (8) •FOIHTEB«

In exaaple (g) above, the «LENGTH^ declaration follows the
structured-node keyword, and thus it applies to the (pQpponents
of the array, rat ier than to the array itself. In ezanple (i) ,
the •ALIGN1 declaration applies to the pointer value itself,
rather than the object pointed to. Note that scope and storage
class can not be declared for subtypes; therefore the following
are exaaples of jpyaj-jd declaration strings:

•FIXED ABBAY^ (3) »INTEGEB» «BASED«
'POINTEB^ -EXISBNAL^ •FLOATING«

Having defined and Illustrated identifier lists and
declaration strings, we will now describe the various foras of
explicit declarations.

:

Part I — Description of the HAD/I Language

" ■ --.

Section 3: Attributes 57

3A6A1_Iäe ! BECI A£El_giäteieflt-la£i

The •DEClaFE' statement (abbreviation •DCL») is the ••root"
for« for explicit declarations. It consists of the statenent
keyword 'DECLARE1 followed by one or «ore identifier lists, each
followed by a declaration string, separated by conas.

DECLARE-stateient =

•DECLARE» li^t , { identifier-list decln-string)

Mote that a decln-string can be NenptyN; i.e., it can be
onitted. The effect of vhe 'DECLARE* stateaent is:

(a) Each identifier in each identifier list is ,•declared,,

in the current block. This will usually cause it to
be "new" to the current block (see Section 3.3).

(b) In each identifier list, each identifier receives the
attribute specifications defined by the decleration
string (if any) inediately following. These
attributes are specified "unconditionally".

Exaspies of 'DECLARE* stateients:

* DECLARE* A
DECLARE (BfC,D,E)
•DECLARE' HfMM,P
•DECLARE* AA «INTEGER*
DCL (BBfCC,DD) •BOOLEA»'
•DCL* FP *PIXED ARRAY* (0...5) *PLOATIHG*,

(GG.HH) *BAS£D* •INTEGERS,
FLAGS «ACCEESIBLE* »BIT* (32)

Par t I — Description of the BAI/I Language

58 Section 3: Attributes

1*6,. 2 lamiifl ,AiBl>iiUaa,iHüiiai toti

The "inverted" declaration statement foes is provided
solely for prograaaer convenience. It nay be considered as a
"transfornation" of the •DSCLARE» for«, in which the *DECLABE*
keyword is replaced by an attribute keyword, which is extracted
from the declaration string. Some exanple pairs of equivalent
stateaents:

•DECLABE« A •IHTEGEB»
•INTEGER« A

•DECLABE1 B »FIXED ARRAY« (4,4) •FLOATING*
•FIXED ABBAT* B (4f4) •FLOATING^

'DCL* (C,D,E) «CHABACTEB* (50), F »CHABACTEB» (5)
•CHABACTEB* (C,D,t) (50), F (5)

Each inverted declaration statenent consists of an
attribute keyword (which also functions here as a statement
keyword) followed by one or «ore identifier lists separatee by
coBnas; each identifier list nay be followed by whatever suffix
the keyword needs, followed by the remainder of the desired
declaration string.

inverted-declaration-stateaent ■
attribute-keyword Ijgt , (identifier-list

[decln-suffix] [decln-string))

decln-suffix » (integer)
I (ii5t » bounds) [subtype-decln]
I (lisy , coaponent-decln)
| subtype-decln

The inverted statetent is treated as though it were transformed
to a •DECLARE^ statement by replacing the initial attribute
keyword with •DECLARER and inserting the attribute keyword
immediately after each identifier list.

More examples of inverted declaration statements:

•INTEGER• A,B,C

•LENGTH^ S (10), 1 (8) •IBTEGER*, 0 (8) *CHAaACTEB*

•BASED« (L,H,»f) «INTEGER», (P,Q) »BOOLEAN*,
STR •COHPONENT STRöCTÜBE* (*BIT* (8), *BIT* (24))

:

Part I — Description of the HAD/I Language

mtmmm

Section 3: Attributes 59

3a6j3 The t)-expressioD for«

The a-expression declaration form is included prinarily for
specifying the attributes of constants, but it nay also be used
for identifiers. This for« allows an explicit declaration to be
attached to an ordinary occurrence of an identifier or constant
in an expression. The declaration consists of the ite« being
leclared, followed by the infix operator 9 , followed by a
parenthesized declaration string:

a-expression = (identifier | constant} 8 (decln-string)

The effect of the a-expression for an identifier is the sa«e as
that of a 'DECLARE» statement with the sa«e identifier and
decln-string. The effect for a constant will be discussed in
Section 3.8. The result of the expression is the sane as the
result of the identifier or constant.

Exanples: ABC 3 (• INTEGER*)
17 a (»PACKED« (5))
••00C1C2C3»» a (»CHARACTER»)

Part I — Description of the HAD/I Language

60 Section 3: Attributes

3f7 laplicit Declarations

3i7«.J £onteitaal_De£lar^tions

Contextual declarations are those which are implied by the
usage of itoas in certain particular contexts. An appearance of
an ites in one of these contexts constitutes a contextual
declaration about the item. The following contexts are defined:

Statement label. If an identifier appears before the
special symbol : in front of a (possibly empty) statement,
that identifier is contextually declared as a label , and as
••new» to the current block.

Procedure-prefix entry ppjnt. Each identifier wnich
apoears as an entry point in a proc-prefix (Sec. 5.7) is
contextually declared as:

(a) a label;
(b) •»notnew" to the procedure block;
(C) Of •ENTRYPOINT1 mode.

If the procedure block is the outeypos^ block, eacn such
identifier is contextually declared 'ACCESSIBLE' as well.

P^cedq^e-pref4x fcraal pa|:ametert Each identifier vhich
appears as a formal parameter in a proc-prefix is contextually
declared as a variable, Mnei*" to the procedure blocx, and ot
forikal parameter storage class.

ß
I
I
I

groceduEg-calJ.a. If an identifier appears as the left
operand of the procedure-call operator (.), it is coitextually
declared as 'EXTERNAL' and 'ENTBYPOIHT«. This is specified
"conditionally", so that if any eyplicjt declarations appear for
the identifier, the contextual declaration will not be applied.
The scope of the identifier is otherwise not affected. It the
identifier appears as a label in the program, the 'EXTERNAL'
specification is not applled.

Part I — Description of the HAD/I Language
fö

* •

i.

I
I

...

Section 3: Attributes 61

HAD/I does not require that the attributes of each
identifier be declared coapletely. For example, if a variable
is declared to have an array node, but the node of the array
components is not explicitly declared, this is not an error. In
each program block there is a set of default attributes, which
are used to "fill-la" attributes which have been neither
explicitly nor contextually declared. There are default
attributes for storage class and node, and a default rule for
determining the scope attribute. In each block, the default
inforaation for that block is associated with the special
identifier 'DEFAULT* , which is itself declarable as described
below.

The rules for applying default attributes to a given
YaCigble in a given block are:

(1) If the variable has been used in the block, but has not
been explicitly or contextually declared, then its scope
with respect to this block is detern.ied fron •DEFAULT' as
follows:

(a) If «DEFAULT» is declared •HEK« or »NOTNEM« in
this block, the variable is "new" or "notnew" to the
block, respectively (see Sec. 3.3).

(b) If «DEFAULT• is £££ declared either «NEW« or
•NOTMEH« ir this block, the variable is "notnew" --
the usual case.

(2) If the variable has no storage class specified, apply the
default storage class. This nay be any storage class other
than fornal parameter.

(3) If the variable has no node specified, apply the default
■ode. If the variable has a structured node specified, but
soae subtype (e.g., coaponent, result) node is not
specified, then apply the default node to each such
subtype.

The rule for applying default attributes to a given label
in a given block is: if the label has no node specified, apply
•TRANSFER POINT* node; if the label has •ENTRY POINT* aode but
the subtype aode is not specified, apply the default aode to the
subtype.

Part I — Description of the HAD/I Language

1.
62 Section 3: Attributes

The default inforaation itself is declarable for each
block. It can be explicitly declared in any of three ways:

(1) With the «DECLARE DEFAULT« statement (abbreviation «DCLO«;
see Section 5.9).

E.g., «DECLARE DEFAULT1 «INTEGER LONG«

(2) With a «DECLARE« statement with «DEFAULT« in an identifier
list.

E.g., «DECLARE« «DEFAULT« «AUTOHATIC« «FLOATIHG«

(3) With an inverted declaracion statement with «DEFAULT* in an
identifier list.

E.g., «FIXED ARRAY« «DEFAULT«(3) «FLOATIMG«

If the default inforaation for a block is not coapletely
explicitly declared, then the missing attributes are "filled in"
fro« the defaults of the next aUtUi block. For this purpose,
the outeraost program block is considered as contained in an
imaginary block with defaults «STATIC« «FLOATIMG SHORT«. For
exaaple, if the outeraost program block contained the
declaration

«DECLARE DEFAULT« «FIXED ARRAY«(3)

and no other explicit declaration of defaults, then the defaults
for that block would be

Storage-class: «STATIC«
Node: «FIXED ARRAY« (3) «FLOATING SHORT* .

Part I — Description of the HAD/I Language

I
I
I
I
J
:

Section 3: Attributes 63

As previously described in Sections 2.1 and 2.2.2,
constants have various external £orns# which Je call "lexical
classes". For each constant, the coapiler nust be able to
compute an appropriate internal for« for coiputation. BAD/I
allows the explicit specification of attributes of constants,
and provides that the conversions froa external to internal
forms are controlled by both lexical class and additional
attributes.

For each lexical class of constant symbol, there is a
standard conversion to a specific mode. The programmer can use
the a operator to declare additional attributes of an
occurrence of a constant symbol. The 'LENGTH1 and ^IIGN*
attributes can be used to adjust the storage allocation and
positioning of the internal form. For some lexical classes, the
mode attribute is also declarable. All constants have only
'STATIC storage class. The rules for the various lexical
classes are described below. The conversion rules themselves
are not declarable, nor are they affected by the defaults
established for identifiers.

1^9,1 PpsjgiKd-iBtgg^ sypbgls

Standard conversion: 'INTEGER LONG* mode.

Alternate conversions: 'INTEGER SHOBT', 'FLOATING SHOBT»,
•FLOATING LONG', 'PACKED' (with optional length).

Example: 305d('IS') converted to 'INTEGER SHORT'.

Standard conversion: 'FLOATING SHORT' mode.

Alternate conversion: 'FLOATING LONG*.

Example: 12.37d('FL') converted to 'FLOATING LONG'.

li8..3 Characte£_synbols

Standard conversion: 'CHARACTER' mode, with length egual to
the number of characters represented between the guotes.

Alternate conversion: 'CHARACTER' mode, with length greater
than that implied by the symbol; the internal form is
extended on the right with character-fill characters
(blanks).

Part I — Description of the HAD/I Language

6a Section 3: Attributes

Example: "&BCOEna (•CHABACTER* (8))

lt6. a_ .iie*ädeciiäl_sxjbois

Standard conversion: «INTEGER LONG« lode; the hexadeciaal
dlqits ace treated as an integer expressed in base 16.

Alternate conversions: * INTEGER SHORT* mode: base 16 integer.
•PACKED* node: tase 16 integer. •CHARACTER* aode: the
hexadeciaal digits ace treated as a bit string» and are
left-justified in the storage allocated for the constant,
kith trailing zero bits as fills. *FLOATING SHORT' and
•FLOATING LONG* nodes: bit string left-justified, with
trailing zero bits as fills.

Exaaple: "OlFF^Xi («C* (5)) converted to *CHARACTEB* aode.

Standard conversion: * POINTER* aode.

Alternate conversions: none.

ILS^J EfilIXrflaifi_cfii}stlIli_§lflbfll§

Standard conversion: * ENTRY NAHE* aode.

Alternate conversions: none.

0

i

Part I — Description of the HAD/I Language

Section 3: Attributes 65

3a9 Attrjbytgs of.EtE^gssions

Host expressions need not have their attributes explicitly
declared. Instead, an expression*s attributes are iiplicitly
"synthesized** fron the attributes of its operands, according to
a "node context** rule of its operator. But soietiaes the
inplied attributes cannot be synthesized because of incciplete
inforaation (e.g., a pointer value «ay point to an "undeclared"
value). Also, a prograaaer say occasionally need to "override"
the implied attributes. Thus, there are two pre-defined
operators which allow the prograaaer to explicitly declare
attributes of expressions; these are the .ASTIPE. and
.ASTYPEOF. operators, described below.

.ASTTPE. (abbreviation .AS.) is an infix operator which
takes an expression as its left operand and a parenthesized
declaration string as its right operand:

astype-expression = expression .ASTYPE. (decln-string)

The result of the astype-expression is exactly the result of
"expression", but with the node and storage-layout attributes
specified by "decln-string"; the storage class of the result is
always the storage class of "expression".

For exaaple, suppose we wish to create a "translate table"
of characters, such that for each integer which is the internal
code of a character, the table aaps that integer to the
^HABACTEB* node value which has that internal code. Thus, the
table defines an "identity" translation on character codes. Let
the table be named TTC; it might be constructed for the IBM 360
by the following program segment:

•DCL* I *INTEGER«, IB »BIT» (8),
TTC «FIXED ARRAY* (0...255) «CHARACTER•(1) ;

•FOR« I:=0,1,I>255; IB := I;
TTC (I) := IB .ASTYPE. («C«) «EHDFOB«

This example assumes (correctly) that the length and alignment
of a variable declared «BIT«(8) will satisfy the reguirements of
«CHARACTER« (1). All uses of .ASTYPE. and .ASTYPEOF. involve
such assumptions; it is the programmer«s responsibility to be
sure they are correct.

Part I — Description of the HAD/I Language

li

66 Section 3: Attributes

.ASTYPEOr. is an infix operator which takes an expression
as its left operand and a parenthesized variable as its right
operand:

astypeof-expression ■ expression .ASTTPBOf. (variable)

The result of the astypeof-expression is exactly the result of
"expression", except that its aodr and storage-layout attributes
are copied fron "variable*. *-

For exaaple, in the "translate table" exaaple described
above, we could have written:

•DCL* I •irrEGBB«, IB «BIT« (8), CHAB «C« ("U t
TTC «FIXED ABBA!« {;0...255? •€• ;

•POB« I:«0,1rI>255; IB t» Ij
TTC (I) :« IE .ASTIPEOF. (CHAB) «ENDFOB»

L

Part I — Description of the HAD/I Language

Section 4: Expressions 67

.

5ection_i4i_EX£ression£

JUQ §asic_Con£e£ts

*n expression is a syntactic for« which specifies the
coipotation of a result. An expression can be a Mpri«itive
expression" (such as a constant or identifier), whose result
requires little or no coaputation, or a "coaposite expression**
(such as A* (B*C), VT (I) , or .ABS.X), whose result is obtained
fron an operation upon the result(s) of one or «ore sub-
expressions, or an "eabedded stateaent**, which is described
later. Each coaposite expression consists of an ppeyator, with
one or two adjoining "operand expressions** whose results are the
operands for the operation. The operation itself is deterained
by the operator» together with selected attributes (such as
aode) of the operand expressions.

The result of an expression is either a £££fi££££e or a
lÜJftfc A "reference** is, in effect, a "location" — an
identification of a region of storage which contains a value
(priaitive or structured) . An expression which produces a
reference result is called a fliliflBiiflLi

.B2te.i A "reference" is not the saae as a "pointer". A pointer
is a type of value which corresponds to a reference, but
which can be copied and otherwise aanipulated.

ALPHA Tes
VECT(I,J) Yes
AA ♦ 5B NO
FN.(X) NO
V := 1 Yes
"ABC" NO
-10 NO
.IND. PTR Yes
A ** .ABS.B NO
(A+E)/(C-D) NO

Any expression can be enclosed in parentheses without
affecting its aeaning. Parentheses so used act as "grouping
sarks" only, and do not convert an expression into a "list" or
"sequence".

The operators, besides being categorized as prefix,
postfix, infix-left, and infix-right (see Sec. 2.2.4), are also
assigned prgyedences ("precedence levels", "priorities",
"binding strengths"). Operator precedences are used in the
usual way to resolve the structure of expressions which are not
fully parenthesized, and which aight otherwise be syntactically

Part I — Description of the HAO/I Language

68 Section U: Expressions

anbiquous. See Sec. U.3 for the precedences of the pre-defined
operators. 1,

The order of computation of a composite expression is only
defined as constrained by the structure of the expression,
together with the interpretation rules of the individual
operations. In particular, we do pot say that an expression is
normally evaluated "left-to-right"' For example, in the
expression (A*B) ♦ (C + D) , the sub-expressions A+B and C+D must L
both be evaluated before the * operation, but they may be
evaluated in either order. i

Expressions are used (syntactically) to build statements»
That is, an expression can constitute a statement or a part of a
statement. Likewise, it is possible to use statements to build
expressions. Any HAC/I statement can be made into a
parenthesized statement which produces a well-defined result;
such statements are called "embedded statements", and they
qualify as expressions. See Sec. 5.6 for more information on
embedded statements.

We will occasionally wish to talk about expressions which
produce results of certain modes. We will use the term
"arithmetic expression" to refer to any expression which
produces a result of an arithmetic mode: «INTEGER SHORT1,
•INTEGER LONG«, «FLOATING SHORT«, «FLOATING LONG«, or «PACKED«.
We will also use the term "character-string expression" to refer
to any expression producing a result of «CHARACTER« or «VARYING
CHARACTER« mode. similarly, "arithmetic designator" and
"character-string designator" refer to arithmetic and character-
string expressions which produce reference results.

A constant produces a value result — the value denoted by
the constant. A constant may or may not be explicitly
represented in the object module; it may or may not have
associated storage.

..

iL.l-_EEimitive_lx££es5icns

There are only two kin^s of primitive expressions:
identifiers and constants.

i, „,

An identifier (a variable or a label) produces a geference
result — a reference to the storage currently allocated for the
identifier, which is assumed to contain the vaj-^e of the
identifier. If no storage is so allocated, this is an error
condition, and the result is undefined.

L
L

Patt I — Description of the MAD/I Language

li

A

Section 4: Expressions 69

JU2 Operafc49D§

The various pre-defined operations are listed below. For
each operation there is a pre-defined operator which denotes
that operation in some contexts. The contexts are all defined,
unless otherwise indicated, by the mode attributes of the
operand expressions. Thus, for each operation and corresponding
operator, we give those pre-defined "mode contexts'* for which
the operator denotes the operation and the operation is defined.
He also give the node and type of the result.

Legend for context tables;

The various 1st operand modes label the rows, and the
various 2nd operand nodes label the columns. Each row-
column position corresponds to a potential mode context for
the operator. Each blank position defines an invalid mode
context; each non-blank position defines a valid mode
context. A non-blank table entry has one of two forms: (1)
A mode abbreviation of on^ or two letters, meaning that the
operation is defined for this context, and the result has
the mode indicated. (2) A digit (1 or 2) followed by a
mode abbreviation, meaning that a copy of the 1st oc 2nd
operand (as indicated by the digit) is converte4 to the
mode indicated, and the table is re-entered with the new
mode context.

4. 2.1 Agithffietic opega^igg?

The arithmetic operations are primarily defined on the
following "arithmetic modes":

Keyword iifc££SZj £S£-2abl£si

• INTEGER SHOBT» IS
•INTEGEB LONG« IL
•FLOATING SHORT« FS
•FLOATING LONG« FL
•PACKED^ PK

Some arithmetic operations are also defined for some contexts
using the "semi-arithmetic" modes:

•BIT^ BT
•POINTER« PT

The arithmetic operations are as follows:

L
Part I — Description of the NAD/I Language

70 Section 4: Expressions

Addition (binary), denoted by ••♦••; e.g., MA ♦ B". The operand-
result contexts are summarized in the table below.

H + n PL PS IL | IS | PK BT | PT
1 1

PL PL | 2PL 1 2PL | 2PL | 2PL 1 1IL
FS 1FL FS 2PS | 2PS 2PS 1 1IL
IL 1FL IPS IL | 2IL 2IL 2IL | PT
IS 1PL 1FS 1 HL | IS 2IS | 2IS | PT
PK 1FL IPS 1IL | IIS | PK 1 1IL
BT 1IL | IIS | BT |
PT 21L 2IL PT | PT 2IL | 1

Subtraction (binary) , denoted by •,-M; e.g., "A - B". The result
is a value — the value of the 1st operand minus the value
of the 2nd operand. See the following table.

L:

II-II PL 1
■

FS | IL | IS |
i

PK |
i

BT PT |
t 1

PL PL 1 2FL | 2PL | 2PL | 2PL |
FS 1PL • FS | 2FS | 2FS | 2PS |
IL 1PL 1 IPS | IL | 2IL | 2IL | 2IL
IS 1PL 1 IPS | 1IL | IS | 2IS | 2IS
PK 1PL 1 IPS | 1IL | IIS | PK |
BT 1 1 1IL | IIS | 1 BT
PT 21L 1 2IL | PT | PT | 2IL | XL 1

Multiplication (binary), denoted by ••♦"; e.g., "A ♦ B". The
result is a value — the product of the operand values.
See the following table.

II lit II PL 1 FS 1
i

IL IS | PK 1
i

BT
1 1 1 1

PL 1 PL 2FL 2FL | 2PL | 2FL
FS 1FL FS 2FS 2FS | 2FS
IL 1FL 1FS IL | 2IL | 2IL 211
IS 1FL 1FS 1IL | IS | 2IS 2IS
PK 1FL IPS 1IL | IIS | PK
BT | 1IL | IIS | BT

Division (binary), denoted by ,,/,,; e«g«r "A / B". The result is
a value — the quotient obtained by dividing the 1st
operand value by the 2nd operand value. If both operands
have integer-like (not floating-point) modes, the operation
is "integer division". see the table for multiplication,
above.

:

part I — Description of the MAD/I Language

Section 4: Expressions 71

.:

i:

..

T T

..

w

..

Remainder (binary), denoted by ".BEH."; e.g., "I .fiEH. J". The
result is a value — the remainder obtained from dividing
the 1st operand value by the 2nd operand value. See the
following table.

".SEN."| XL | IS | PK | BT |
+- + +• I

IL | IL | 211 | 2IL | 2IL |
IS i 1IL | IS | 2IS | 2IS |
PK | 1IL | IIS | PK | |
BT i 1IL | IIS | I BT |

Negation (unaiy) # denoted by ••.NEG." (or prefix ,,-w); e.g.,
".NEG. A", "-A". The result is a value — the arithmetic
negative of the operand value. See the following table.

".NEG."I
 +•

PL |
 h

FS | IL | IS | PK |

I FL | FS | IL | IS | PK |

Absolute value (unary), denoted by M.ABS.W; e.g., ".ABS. A".
The result is a value — the value of the operand if that
is non-negative, otherwise its negative. See the table for
negation, above.

Exponentiation (binary), denoted by •'♦♦••; e.g., "A ♦♦ B". The
result is a value -- the 1st operand value raised to the
power of the 2nd operand value. See the following table.

••**•• I FL | FS
-+■

FL | FL | 2FL
FS | 1FL \ FS
IL (1FL | 1FS
IS | 1FL | 1FS
PK | 1FL | 1FS
BT I |

IL | IS | PK
+

FL | 2IL | 2IL
FS | 2IL | 2IL
IL | 2IL | 2IL
1IL | IL | 2IS
1IL | IIS | IL
1IL | IIS |

1 BT |

1 2IL |
1 2IL |
1 2IL |
1 2IS |
1 !
1 BT i

[i
Part I — Description of the MAD/I Language

72 Section U: Expressions

>.

^^2^2 .S£läüsnal_oj2erations

The six pre-defined relational operations are described as
a group. The result of each is a Boolean value — representing
whether the operand values satisfy the specified relation.

Equality (binary), denoted by "-"; e.g., "A = B".

Inequality (binary), denoted by ••-•«•• and ".NE."; e.g., "A -.= B",
"A. NE. B".

Greater-than (binary), denoted by "V; 5.g., "A > BM.

Greater-than-or-equal-to (binary), denoted by ">=": e.g.,
"A >= B".

Less-than (binary), denoted by •K"; e.g., "A < B".

Less-than-or-equal-to (binary), denoted by ,,<=M; e.g., "A <= B".

;.

..

All six operations are defined for the mode contexts shown
in the following two tables:

REL'N FL 1 FS IL 1 IS |
i

PK I
-4-

BT

FL BL
T

2FL 2FL
1

2FL | 2FL
1

FS 1FL BL 2FS 2FS | 2FS
IL 1FL 1FS | BL 2IL | 2IL 2IL
IS 1FL 1FS | 1IL BL | 2IS 2IS
PK 1FL 1FS | 1IL IIS | BL
BT 1IL 1IS | BL

-J

REL'N BL 1 BT I VC 1
.4.

c I
1

BL BL 1 2BL (
T

1
1

1
BT 1BL 1 BL | 1 1
VC 1 i BL 1 BL |
c 1 1 BL 1 BL i

... _ . J

Boolean values are compared by interpreting •TRUE' as "I"
and •FALSF« as "0". Character strings are compared according to
the collating sequence of the character set. If the two
character strings have different lengths, the shorter string
value is extended on the right with character-fill characters
(blanks) before comparison.

Part Description of the MAD/I Language

Section 4: Expressions 73

The equality and inequality operations are also pre-defined
for operand pairs of the follovinq nodes:

•POINTER« (PT# FT)

•ENTRY NAME* (EN, EN)

jis.2^3 gpftlean operations

The Boolean (logical) operations are defined on operands of
Boolean and Bit modes only; they all produce Boolean value
results which depend upon the values of the operands. Bit mode
operands are converted to Boolean mode.

Logical negation (unary), denoted by '•-•" and ".NOT.**; e.g.,
"-. P", ".NOT. P".

Logical "and" (conjunction) (binary) , denoted by "&•' and
".AND."; e.g., "P & Q", "P .AND. Q". If either operand is
•FALSE', the other operand expression possibly may not be
evaluated.

Logical "or" (disjunction) (binary), denoted by "|M and ".OB.";
e.g., "P | Q", "P .OR. Q". If either operand is 'TBUE»,
the other operand expression possibly may not be evaluated.

Logical "exclusive or" (binary), denoted by ".EXOR."; e.g.,
"P .EXOR. Q".

Logical "implication" (binary), denoted by ".THEN."; e.g.,
"P .THEN. Q", The result is «FALSE» if the 1st operand is
•TRUE' and the 2nd operand is 'FALSE*; otherwise, the
result is »TROE«. If the 1st operand is •FALSE» or the 2nd
operand is »TRUE», the other operand expression possibly
may not be evaluated.

Logical "equivalence" (binary), denoted by ".EQV.M; e.g.,
"P .EQV. Q". The result is •TRUE* if the operand values
are egual, and 'FALSE' otherwise.

Part I — Description of the HAD/I Language

74 Section U: Expressions

I.

L

i.

JL^Ü—Bit^strijiSUaBerations

The bit-string operations are defined on operands of all
modes except «TRANSFEB POINT' and »ENTRY POINT». The result is
always a bit-string value, with the same mode and length as the
1st operand.

T]ie_bitwis§_i2aic4l_ope£ati2nsi

The operand values are treated as bit strings. The binary
operations "and", "or", and "exclusive or" reguire egual-length
operands. 1.

Bitwise negation (unary), denoted by ".N.N; e.g., ".N. A". Each
bit of the result is the negation (complement) of the
corresponding bit of the operand.

Bitwise "and" (binary), denoted by ".A."; e.g., "A .A. B". Each
bit of the result is the "and" (conjunction) of the two
corresponding bits of the operands.

Bitwise "or" (binary), denoted by ".V."; e.g., "A .V. BM. Each
bit of the result is the "or" (disjunction) of the two
corresponding bits of the operands.

Bitwise "exclusive or" (binary), denoted by ".EV.M; e.g.,
"A .EV. B". Each bit of the result is the "exclusive or"
of the two corresponding bits of the operands.

The, bj^w^se sfejtt.gperations;

The first operand value is treated as a bit string. The
second operand must have an arithmetic mode or »BIT» mode; its
value is converted (if necessary) to an integer value, which
must be non-negative and is used as the shift count. The result
is a new value; neither operand is affected.

Bitwise-logical left shift and right shift (binary), denoted by
".LS." and ".RS.", respectively; e.g., "A .LS. J",
"A .RS. J". The 1st operand value is shifted left (or
right) by the , number of bit positions specified by the
shift count. If the shift count is negative the operation
is undefined. The bit string stays the same length; bits
shifted off either end are lost, and vacated bit positions
are filled with 0 bits.

Bitwise-arithmetic left shift and right shift (binary), denoted
by ".LSA." and ".RSA.", respectively; e.g., "A .LSA. J",
"A .R5Ä. J". The first operand value is treated as a
binary representation of a signed integer. It is shifted
left (or right) by the number of binary digits specified by
the shift count. If the shift count is negative the

Part I — Description of the MAD/I Language

Section 4: Expressions 75

operation is undefined. The binary integer stays the same
lenqth; it is shifted so as to preserve its sinn, and
effect multiplication (or division) by a power cj. tvo.
Digits shifted off either end are lost.

iLt2A5 Character-string operations

Concatenation (binary), denoted by "11" and ".CONCAT.**; e.g.,
"A || B", "A .CONCAT. B". Both operands «ust be of
character-string nodes: 'CHARACTER1 or •VARYING CHARACTER*.
The result is a value — the 1st operand value concatenated
with (followed by) the 2nd operand value. The length of
the result is the sum of the (current) operand lengths.
The result mode is 'CHARACTER* if both operands are of
•CHARACTER* mode, and *VAR¥IN6 CHARACTER* otherwise.

4.2,6 Selection operations

Selection by component name (binary), denoted by •*$**; e.g.,
"A $ aNAilE". The 1st operand must be a reference of a
structured mode allowing named components (*COMPONENT
STRUCTURE* or 'ALTERNATE*). The 2nd operand must be a
component name which names some component of the 1st
operand. The result is a reference of the named component;
its mode, length, and other attributes are obtained from
the subtype-decln part of the component declaration.

SeJection by subscript value (n-ary), denoted by ".TAG." or
implied by the syntactic context " expression ("; e.g.,
"A .TAG. I", "A(I)", "A(I,J)", "(EXP)(K)". The 1st operand
must be a reference of a structured mode allowing numbered
components ('FIXED ARRAY*, * VARYING ARRAY*, *COHPCN£NT
STRUCTURE*, 'ALTERNATE•) . The remaining operands must have
values convertible to integers (arithmetic or *BIT* modes),
and are interpreted as an ordered set of subscript values.

If the 1st operand has *COHPONENT STRUCTURE* or
'ALTERNATE* mode, there must be exactly one subscript. The
integer subscript value must be at least 1 and not greater
than the number of declared components. If the subscript
expression is a constant (with possible sign), then the
mode and other attributes of the result are obtained from
the subtype-decln in the component declaration. If the
subscript is not a constant, the attributes of the result
cannot be synthesized by the compiler; then the attributes
are considered "undeclared", and are usually attached with
an .ASTYPE. or .ASTYPEOF. declaration.

If the 1st operand has an array mode, there must be
exactly as many subscripts as the array's dimension

Part I — Description of the HAD/I Language

■ .

76 Section 4: Expressions

attribute specific«:. Each integer subscript value Bust be
in the range defined by the corresponding lower and upper
subscript bounds; otherwise the result is undefined. The
node and other attributes of the result are obtained froa
the subtype-decln in the aode declaration of the array.

In any case, the result is a reference of the selected
coaponent.

Substring selection (ternary), denoted by N.TAG.N or implied by
the syntactic context " expression ("; e.g., ••CHU)",
••* .TAG. {l,J)"t

MCH(I,J)M. The 1st operand lust have a
character-string mode (•CHARACTER* or 'VARYING CHARACTER») #
and may be either a reference or a value. Its value is the
character string (possibly null) in which a substring is to
be selected. Let S denote the string and let £ be the
current string length. The 2nd and 3rd operands Bust have
values convertible to integers. Let J and Jc be the integer
values of the 2nd and 3rd operands, respectively: these are
interpreted as the position and length of the desired
substring. Me reguire that j>0 and küO. The 3rd operand
may be omitted; if it is, k=1 is assumed. The 3rd operand
may also be the special symbol # ; if it is, k=m-j+1 is
assumed. If j>m or if j*k-1 > m, the operation is
undefined. Otherwise the substring is S(j) — S(j+k-1) .
The result is a reference or value according as the 1st
operand is a reference or value. If the 3rd operand
expression is an integer constant or omitted, then the
result is 'CHARACTER1 mode with length k; otherwise the
result is 'VARYING CHARACTER* mode, with current length k.

^2^7 Pgocgdyge-cal^gpecation

Procedure-call (n-ary) is denoted by "."; e.g., "F.XM,
"G. (X,Y)M. The 1st operand must have either 'ENTRY POINT' or
•ENTRY NAHE' mode; it may be either a reference or value. This
operand identifies a procedure entry point to be called. The
remaining operands (if any) may be references or values; they
are the actual parameters to be passed to the procedure. Those
parameters which are values are held in temporary storage, and
are replaced by references of their allocated storage.

There are also two phrase keywords which may appear after
the actual parameter list; these are 'ERROR EXIT1 and 'SAVE
CODE', and are used to examine a possible auxiliary "return
code" from the called procedure. «ERROR EXIT« introduces a list
of labels; the labels denote places to "go to" for various non-
zero return code values. 'SAVE CODE' must be followed by an
•INTEGER LONG' variable; it is used to save the return code for
lat<?r reference.

Fart I — Description of the KAD/I Language

u
I:

Section 4: Expressions 77

Ezanples:
BANDOR.
F. (X)
SORT.(N,VA,VB)
GETLINE. (LIME •ERROR EXIT* Li)
PH. (P,Q »ERROR EXIT« L1,L2 »SAVE CODE« RC)

The procedure-call proceeds as follows:

(1) Evaluate the 1st operand expression to detecaine the
desired entry point.

(2) Evaluate the operand expressions for the actual paraaetecs.
Convert each «EHTRY POINT* result to 'ENTRY NAHE* aode, and
assign the current environment inforaation. (The entry
point naaed ml be owned by the currept block, but this
cannot be checked by the coapiler.) Disallow 'TRANSFER
POINT' aode. Allocate temporary storage for those operands
which are values, and let the actual parameter list be
£§£S£SfiS£S of the operands.

(3) Save the current program position and environaent
inforaation, and transfer control to the procedure entry
point, in such a way that execution of a 'RETURN' will
cause control to be resumed at (4) below.

(4) If a 'SAVE CODE' phrase appears in the procedure call,
assign the return cod« to the integer variable. (See
Section 14 for iapleaentation.)

(5) If 'ERROR EXIT' appears in the procedure call, exaaine the
return code. If the return code is zero, proceed to (6)
below; otherwise, transfer control to the stateaent naaed
by the Ic-th label if the return cede is Jk^ k*1,2,... If
the return code exceeds the number of labels, the action is
undefined.

(6) The result is the value returned froa the procedure; its
attributes are obtained froa the subtype-decln part of the
1st operand declaration.

Üi2JL.8__Conxej:si2IUfl£eiation§

HAD/I provides a nuaber of operations to convert a value of
one aode to a corresponding value of another aode. In general,
the result is a new value, obtained by copying and transforaing
the original value. Host conversions are iaplied by context and
autoaatically generated by the coapiler. However, the
operations are all binary, and are denoted as a class by the
".CON?." operator; e.g., "A .CONV. ('INTEGER')". This operator

Part I — Description of the HAD/I Language

78 Section <t: Expressions

requires a parenthesized decln-string as its 2nd operand
expression.

The pre-defined conversions are described below. In the
context table, each position represents a potential conversion
from the row node to the colunn node. A "0" entry aeans that
the conversion is defined and is trivial; other entries refer to
the text following tne table.

M.C0NV.H| FL | FS | IL | IS | PK | BT

(A)

(B)

(C)

(D)

(E)

(F)

(G>

(H)

The value is extended (or truncated) on the low-order
to the new length.

end

The value is extended (or trancated) on the high-order end
to the new length. Truncation of a value not representable
in the new node will produce an erroneous result.

The value is converted fron decinal to binary, and
truncated (if necessary) to the new length. Information
may be lost if the value is too large.

The value is con
is 'PACKED« (16) .

verted fron binary to decinal; the result

The value is converted to binary (if necessary), then to
un-noraalized floating-long, then nornalized, and finally
truncated (if necessary) to the new length.

The value is extended (if necessary), to floating-long,
then de-normalized to align the integral part, then
converted to integer-long, and finally (if necessary)
truncated or converted to decinal.

The bit-string
integer, and
hiqh-order end

value is interpreted as an unsigned binary
extended with zeros (if necessary) on the
to the new length.

The bit-strinq is interpreted as •FALSE« if all bits are 0,
and as «TRUE' otbervise.

Part I — Cescription ot the MAD/I Language

■

y

Section 4: Expressions 79

Ü.iiA5_A5Siaflient_0£erations

Assigment of a value is a binary operation, denoted by
••: = ••• e.g., nk := B"# "VAR := 100". The 1st operand »ust be a
reference other than a label, and not of "TBAMSFER POINT1 or
•ENTBY POINT* «öde. The 2nd operand nay be a reference or a
value.

The 1st operand expression is evaluated to produce a
reference. Then the 2nd operand expression is evaluated. The
value of the 2nd operand is converted (if necessary) to the node
and storage-layout attributes of the 1st operand, and replaces
the value identified by the 1st operand. The result is a
reference of the 1st operand.

Assignment is pre-defined for the following contexts; some
notes are provided to fill in details which are not obvious.

(Arithmetic mode. Arithmetic mode)

(BL, BL) 'BOOLEAN*
(BT, BT) 'BIT* — extend/truncate on left.
(BT, BL) Set all bits 1 (*TRUE*) or 0 (*FALSE*).

(BT, IL) Express integer as bit string.
(BT, IS) Express integer as bit string.

(C, C) •CHARACTER*; extend/truncate on right.
(VC, VC) 'VARYING CHARACTER*
(VC, C) Set current length « fixed length«
(C, VC) Extend/truncate on right.

(FT, PT) «PCINTEfl*
(EN, EN) «ENTRY NAHE*

(*ENTRY NAME*, »ENTRY POINT*) The entry name value points
to the entry point, and the current environment
information is assigned. The entry point must be
owned by the current block; this cannot (in general)
be checked by the compiler.

(*ENTRY NAHE*, «TRANSFER POINT*) The entry name value
points to the transfer point; the environment
information is undefined. The resulting value can be
used in a *60 TO*, but not in a procedure call, nor as
an actual parameter.

Part I — Description of the HAD/I Language

......
■

■

80 Section 4: Expressions

ÜJ-IAIQ Other operations

Length of a value (unary), denoted by ".LN.n; e.g., ".LN. B".
The operand nay be a reference or value of any mode other
than «TRANSFER POINT* or «ENTRY NAHE*. The result is a
value of 'INTEGER LONG« mode — the "length" of the operand
value. For «VARYING CHARACTER« operands, the "length" is
the current length of the character string.

Association of storage (binary), denoted by ".ALLOC"; e.g.,
"A .ALLOC. B". The 1st operand expression must be a
variable of based or formal parameter storage class, and of
any mode. The 2nd operand must be a reference or value of
«POINTER* mode. The storage reference determined by the
pointer value is associated with the variable, so that the
variable now has this reference as its result. If the
pointer value eguals * NULL FT*, then the variable becomes
"not allocated", and its result is undefined.

Create pointer (unary), denoted by ".FT."; e.g., ".FT. B". The
operand must be a reference (of any mode). The result is a
value of 'POINTER* mode corresponding to the reference;
i.e., a pointer to the operand.

Indirect reference (unary), denoted by ".IND."; e.g., ".IND. E".
The operand must have «POINTER* mode; its value must be a
non-null pointer. The result is the reference determined
by the pointer; the mode and storage layout attributes are
obtained from the subtype-decln part of the pointer
declaration.

Create a pointer constant (unary; compile-time only), denoted by
".PTCON."; e.g., ".FTCON.(B)". The operand expression must
be an identifier, and must be enclosed in parentheses. The
result is a constant of 'POINTER* mode corresponding to the
reference of the identifier.

Create an entry-name constant (unary; compile-time only),
denoted by ".ENCJN."; e.g., ".ENCON. (B)««. The operand
expression must be an identifier, and must be enclosed in
parentheses. The result is a constant of *ENTBY NAME*
mode; it points to the entry point named by the identifier,
but it does not carry environment information.

Part I -- Description of the MAD/I Language

,

,

.

Section 4: Expressions 81

4.3 Operator Precedence a^4 Clasg

MAD/I operators are symbols which denote operations (see
Sec. 2.2.4). The operations themselves are described in the
preceding subsection; we now describe the syntactic properties
of operators.

Every operator has a synt^qtjy class and a precedence
level, The syntactic class tells how the operator is written
with respect to its operand expressions:

Prefix: ^efoge its operand expression(s).
1* Postfix: after its operand expression(s).

Infix-left: between its operand expressions:
LI associates" left-to-right with operators of

equal precedence.

Infix-right: between its operand expressions;
associates "^ right-to-left with equal-
precedence operators.

An operator's precedence level (precedence) determines its
syntactic "binding strength" relative to other operators. An
expression appearing between two operators is "bound" as an
operand expression to one operator or the other as follows:

If the operators have different precedence levels, the
expression is bound to the higher-level operator.

If the operators have the same precedence level, they
must be either both infix-leit or both infix-right.
The expression is bound to the left operator if they
are infix-left, and to the right operator if they are
infix-right.

To avoid the possibility of ambiguous constructions, a rule is
applied to all operators, both pre-defined and user-defined:

All operators having the same precedence level must
have the same syntactic class.

Also, parentheses may be used as grouping marks in the usual
way: one or more expressions (separated by commas) may be
enclosed in parentheses, forming a "group" of expressions which
is bound as a unit. This is often necessary in denoting n-ary
operations; e.g., ARRAY .TAG. (I,J,K) .

Part I — Description of the MAD/I Language

82 Section 4: Expressions

The following table shows the pre-defined operators,
arranged from highest precedence level to lowest precedence
level, and the syntactic class at each level. (There are no
pre-defined postfix operators.)

INFIXIINFIXI
LEFTIRIGHTIPfiEFIX I OPERATORS

X 1 1
| 1

| .TAG. . a .CONV. .ASTYPfei .ASTYPEOF.

I 1 x .ABS. .LN. .PT. .INDi .PTCON. .ENCON.

x i i • L o • • R S « •XiSA« .RSA.

1 i x .».

X 1 1
■ i

.A.
i i

X 1 1
1 1

| .V. .EV.
1 1
1 X | **

1 1
I 1 x
I 1

I .NEG.
1 1

X 1 i
1 1

♦ / .REM.
1 1

X 1 1
1 1

♦ -
1 1

x i ;
■ i

|| .CONCAT.
i i

X 1 1
1 1

= -.= .NE. > >= < <=
1 1
1 I x
1 1

-. .NOT.
1 1

X 1 1
1 1

6 .AND.
1 1

X 1 i 1
1 i f

| .OR. .EXOR.
1 1 1

XI 1 1
1 1 1

.THEN.
1 1

XI 1 1
f 1 i

.EQV.
1 1 1
1 X | | := .ALLOC.

i
]

I

.

1 ■

ü

Part I — Description of the MAD/I Language
:

MHlNV^

D

Li

i.

I

Section 4: Expressions 83

J4J.Ü syntax of Expressions

The set of HAD/I operators is extensible, and new operators
may introduce new precedence levels between the existing levels.
Therefore we must resort to uncorventional methods to present a
syntax which will describe all possible expressions.

Let precedence levels be denoted by special variables: 1,
j, k, 1. Let notations such as n>j" mean "any level higher than
level i". Also let the notation "ioj" mean "the lower of levels
i and j", and let "+" denote the highest possible level.

Associate with syntax variable "exp" (for "expression") two
precedence level parameters: the precedence "viewed from the
left", and the precedence "viewed from the right". Thus, the
syntax notation "exp(i,j)" will denote an occurrence of an "exp"
with precedence levels i and j as viewed from the left and
right, respectively.

Also define syntax variables for the operators, with their
precedence levels as parameters. Thus, "prefix-op(j)" denotes
an occurrence of a prefix operator with precedence level j, and
similarly for postfix-op(j), infix-L-op(j), and infix-B-op(j).

In this extended notation, we now define the formal syntax
of HAD/I expressions. An example rule is explained below.

exp(+,+) = constant | identifier | embedded-statement
I (list , exp)

exp(*,j0k) = prefix-op(j) exp(>j,k)

exp(i0j,+) = exp(i,>j) postf ix-op (j)

expCiOj^-'k) = exp(i,2j) inf ix-L-op (j) exp(>j,k)

exp(ioj,j0k) = exp(.i.,>j) infix-R-op(j) exp(2:j,k)

expression = exp

For example, the syntax rule

exp(+,j0k) = prefix-op(j) exp(>j,k)

means: "A prefix operator with precedence level j, followed by
an expression with any left-precedence greater than j and any
right-precedence k, forms a composite expression with left-
precedence "highest" and right-precedence egual to the lower of
j and k". Referring to the operator table in Section 4.3, we
see that this rule can combine ".NEG." and ••A**B" to get
".NEG.A**B", but it cannot combine ".NEC." and "A+B" to get
".NEG.A+B".

Part I — Description of the HAD/I Language

. . ,. ..-.,■■..■'■■■■. ■

-^ . , ■ ■ . .

84 Section 5: Statements

Section 5;.Statements

5.0 Jntroductjon

Each non-empty statement in the language falls into one of
five classes: (i) simple statements, (ii) compound statements,
(iii) prefix statements, (iv) list statements, and (v)
declaration statements. Unless otherwise indicated by the
interpretation of a statement, its successor (at run time) is
the statement written immediately after it. Two adjacent
statements are always separated by a semicolon, but the
semicolon is not a part of the statement it follows.

Empty statements

A statement can also be "empty" (consisting of no symbols).
An empty statement specifies no computation; it can, however, be
labeled.

Syntax: statement = empty

Labeled st^temepts

Any statemtat can be labeled, by prefixing it with an
identifier and a colon; the resulting form is itself a
statement. Labels on declaration statements are permitted.

Syntax: statement = identifier : statement

Simj:le_statements

The simple statements have two general forms:

(1) a single expression;

(2) a simple-statement keyword, possibly followed by one or more
expressions separated by commas or phrase keywords (a
"phrase list").

In case (1), the expression is simply evaluated; it has no
effect other than the effects produced under the rules of
expressions; the result is not saved. Such a statement is
usually an assignment, da .ALLOC, expression, or a procedure
call.

In case (2), the exaet statement form is determined by the
statement keyword and its associated statement definition. For

Part l — Description of the MAD/I Language

.:

.

. .

Ü

:.

.

Section 5: Statements 85

each statement keyword, there is a fixed number of expressions
which may follow.

Syntax: statement = expression
I simple-stmt-keyword [phrase-listj

phrase-list = list { , | phrase-keyword) expression

Examples: A := B
FN.(X,y)
•GO TO' LB

Compound statements

A compound statement is simply a sequence of statements
separated by semicolons and bracketed by a compound-statement
keyword and an end keyword. The resulting form is itself a
statement.

Syntax:
statement = compound-stmt-keyword stmt-seq end-keyword

stmt-seq = li§t ; statement

Example:
•BEGIN» A := B; B := C •END»

££e£i2_s£ä£efflents

Each prefix statement form begins with a "prefix part",
consisting of a prefix-statement keyword and a fix^d-length

ii phrase list, such as:

•!?• exprn
or

•FOR1 desig := exprn, exprn, exprn

For each such prefix part there are two forms of the prefix
statement: (1) the prefix-part followed by a comma and a single
statement (the "short form"); (2) the prefix-part, possibly
followed by a semicolon and a statement-sequence, and ending
with a matching end keyword (the "long form"). The particular
end keyword which "matches" depends upon the statement keyword;
however, the symbol •END* is a general-purpose end keyword which
may be used to end any long-form prefix statement.

Prefix statements and compound statements may be properly
nested; each occurrence of a long-form prefix statement requires
its own end keyword.

Part I — Description of the MAD/I Language

■■' ■ t ~*mmim&*&mmitim*im ww^^w*^^'»^mww-wwsffl»i^j^juiiMP»wtWli^^

86 Section 5: Statements

Syntax:
statement = prefix-stmt-keyvord phrase-list

{ , statement
| [; stmt-seq] end-keyword)

Short-form example:

•IF« A > B, B := A

long-form examples:

(1) 'FOR« I := 1, 1, I > N;
V(I) := I + 1; »(I) := 0 »ENDFOR«

(2) 'FOR' J := 0, 1, C(J) =0 «ENDFOR«

Note that in example (2), the prefix is followed immediately by
the end keyword; the "scope" of the statement is empty.

List statgmeats

A list statement consists of a prefix followed by a varying
number of expressions. The prefix begins with a statement
keyword; the form of the rest of the prefix depends upon the
particular statement keyword.

Examples:

'HRITE« (M3l7*M,1)# J, K, L

'PRESET' A: = 3, V(1):=1, V(3):=3

•LIST' X(I) , Y(I) , Z(I)

PGclaratiqa.statements

Declaration statements have two general forms: the
•DECLARE' statement and the "inverted" declaration statements.
They have a special syntax, described in Sections 3.6 and 5.9.

Examples:

•DECLARE' A 'INTEGER', (B,CrD) 'FLOATING«

•BOOLEAN' 51, S2, S3

u
I.

Ü

LI
i:

Part I — Description of the BAD/I Language

i:
0

i
I
I

section 5: Statements 87

5.1 Expression Statements

An expression is also a simple statement. Execution of an
"expression statement** consists of evaluating the expression and
ignoring the result.

Notice that expressions include assignments and procedure
calls.

Examples: V := A + B
BV .ALLOC. (.FT. V)

11 SORT. (N, Al, A2, KEY)
A ♦ B

Part I — Description of the HAD/I Language

■'

■■■. ■■■■■■ >—*',.

88 Section 5: Stateients

1.

5A2__Illg.I£Q_IQl_5tateieat

This {simple) statement has the form:

•GO TO« S

Here S may be any label or entry point or any expression in
entry name mode. Execution of this statement causes the
computation to continue at the statement whose label is the
value of S.

Examples:

•GO TO« 100PU

•GO TO» ESTRYB

If the value of S is an entry point (i.e., if it has
appeared in a •PROCEDüBE^ definition or has been declared * ENTRY
POINT1) a •GO TO* statement may be used, even if the statement
it labels is not in the same program. In addition» for entry
points one can get parameter substitutions at the same time by a
•HITH« clause containing a parenthesized list of actual
parameters:

•GO TO» S •MITH^ (E(1), E(2), —, E(N))

where the expressions E(i) agree in mode and length with the
formal parameters declared for the entry point designated by S.

0

I

i.

Part I — Description of the MAD/I Language

Section 5: Statements 89

This (prefix) statement has a prefix of the form

•IF1 bool-exprn

where "bool-exprn" is an expression of Boolean node. Thus,
examples of the short form are:

•IF» X > I, «GO TO» SI

•IF' A=B6I=J, Q:»B* .ABS. T

The general long form is:

•IF* bool-exprn ; stnt-seq
[list (; *0B IF* bool-exprn ; stnt-seg)]
[; «OR ELSE*; stlt-seq] •EMOIF*

stnt-seq ■ Üsi ; statement

The •OR IF' groups are optional; any number of them may be
used. The •OR ELSE* group is likewise optional, but only one
•OR ELSE^ may appear in a given long-form •IF' statement. *0R
ELSE* may be abbreviated as 'ELSE*.

The effect of this statement is to select for execution one
of the statement sequences "stmt-seg". Specifically, the first
Boolean expression "bool-exprff* from the left found to be tyye
causes the execution of the immediately following Nstmt-segN.
Here, •OB ELSE^ can be interpreted as "always true", i.e., as
•OR IF* «TRUE*.

Example long-form 'IF' statements:

'IF' A = B; S :»T ♦ J; I :« 1-1; *G0 TO* H *EHD IF*

*IF' t < S; I :» 1*1; *0R IF* Q > S; I := 1-1;
•OR ILSE*; •GO TO* ST *EMDIF*

IF J«0; D(J): = 1; *ELSE*; D(J):=D(J)+1 *EMDIF*

Part I — Description of the HAD/I Language

90 Section 5: Statteients

5aÜ__I^e_liaBi_5i4ieä£at

The •FOB' statement is a prefix statement foe specifying
iterations. The statement-keyword and phrase-list are:

•FOH« desig := etprn2f exprn3r exprn*»

where "desig'* produces a reference of the iteration value,
,,exprn2" gives the initial value« Mexprn3" gives the increaent
value, and "exprnU" is a Boolean expression to test for
completion. The nodes of exprn2 and exprn3 aust be such that
"desig :■ exprn2" and "desig :■ desig ♦ exprn3" are legitimate
exorassions. The end-keyword for the 'FOR' statement is
•ENDFOH».

The interpretation of the 'FOR' statement with scope "stmt-
seq" is as if it had been written as follows:

desig :■ (expin2) ;
L: «IF« - (exprnU);

stmt-seg;
desig :■ (desig) ♦ (exprn3) ;
•GO TO» L
•ENDIF«

where "L" represents a local label. In other words: the
designator is evaluated to get the reference for the iteration
value; the iteration value is initialized to the value of
exprn2; as long as the value of exprnl is * FALSE*, the scope
stnt-seg is executed, followed by incrementing the iteration
value by the latest value of exprnS. Mote that if exprnl is
•TRUE* on the first test, the scope is not executed at all.

Examples:

(1) 'INTEGER' J,N;
SUN := 0.;
•FOR« J := N, -1, J < 0, Y := SUN ♦ X ♦ C(J)

(2) «FOR« I := 1, 1, CH(I) = "," | I > K, ;
•IF» I > K, *GO TO' NOCOHHÄ

(3) 'FOR' I := 1, 1, I > H;
J := 0;
•FOR^ 5(1) := 0, B(I,J), (J := J ♦ 1) > H
•ENDFOR^

•ENDFOR«

'art I — Description of the HAO/I Language

I.

(1)

(2)

(3)

. («0

(5)

Section 5: Stateients 91

5A5__liie_lfOJB_vliJiJE51.§i4ieient

The «FOB VALOES* stateient is another prefix statement foe
specifying iterations. The prefix has the foci:

•FOB VALUES» desig := (lisi « expen)

where NdesigN designates the iteration valae, and each NexprnN

in the list has a «ode such that Mdesig :«■ exprn" is a valid
assignaent. The end keyword for the 'FOR VALUES' stateient is
•IIDPOI*.

The interpretation of the 'FOB VALUES' stateient is as
follows:

Evaluate NdesigN to deternine the iteration value.

Set (local variable) i equal to 1.

Evaluate the i-tb "exprn" in the list, and let its value
(with the appropriate conversion, if necessary) replace the
iteration value.

Execute the scope (statement or stateient sequence). Let
norial sequencing proceed to (5).

If i is equal to the nuiber of ,,exprnMs in the list, the
'FOB VALUES* stateient is finished; otherwise, increient 4
by 1 and go back to (3).

Exaiples:

(1) 'FOB VALUES* K :« (0,1*5), A (K) :• 0

(2) *FOa VALUES* CH :» (••A'*, **XM, ••O"*, "I**);
J :■ SCAM. (LIVE, CH) ;
•IF* CH ■ "X**, JX :» J

•BiDPOl*

Part I — Description of the HAD/I Language

i.
92 Section 5: Statements

5Ai__UiS_MtllüIi-Statemefit j|

This (prefix) statement has a prefix of the form

•VALUE« V s= E li

«here V is a designator, and E is an expression such that the -■
assignment V :» B is legitimate. A shorter form of the prefix
is

•VALUE' V

in which case the initial value of V is the value it had just
before execution of the «VALUE« statement. The end keyword is
«END VALUE«. li

i.

An example of the short form is:

«VALUE« S := 0., «FOR« I := 1,1,1 > N,

S := S ♦ A(I)

An example of the long form is:

•VALUED TRACE := 0.;

•FOR^ I := 1,1,1 > N;

•FOR« J := 1,1,J > N;

C(I,J) := 0.;

«FOR« K := 1,1,K > N,

C(I,J) := C(I,J) ♦ A(IfK)*B(K,J) «END FOR« ;

TBACE := TRACE ♦ C{IrI)«END FOR« «END VALUE«

The interpretation of the «VALUE« statement is that a value
is produced for V as a result of the execution of the scope.
This prefix statement may now be enclosed in parentheses and
used as an embedded statement, since it has produced a value.
The expression E in the prefix is an initial value for V. Thus,
in the long-form example above, if N = 0, then none of the scope
would actually be executed (since I > N), and the value produced
(which in any case is the final value of TRACE) , is 0.

11
Part I — Description of the MAD/I Language I

Section 5: Statements 93

.5.7 Procedures

^2 A:L._TJte-.l£^ fißqp&l_gt ateien t

This (prefix) statement, called a pjcopeduy<p d^^jnitiop, has
the following syntax:

procedure = proc-prefix; list ; statement «END PROCEDüBE,

proc-prefix = 'PBOCEDURE' Ijst , entry-spec

entry-spec = identifier-list [.][formal-parameters]

formal-parameters = (ligt , identifier)

A typical prefix would be:

•PBOCEDURE* (J,K,L). (X,¥,Z,H)

where the first part specifies entry points for the procedure,
i.e., Jf K, and L, and the second part specifies formal
parameters to be associated with each of those entry points. If
there is only one entry point, the parentheses around it may be
omitted. If there are no formal parameters, the second pair of
parentheses may be omitted. The period is always optional in a
procedure prefix. Thus, the prefix

•PBOCEDUBE« (F,G).(X), H. (X,Y), L.

specifies that F and G are entry points with formal parameter X,
that H is an entry point with parameters X and Y, and that L is
an entry point with no parameters.

The short form of the •PROCEDORE1 statement differs
somewhat from the usual short form; it looks much like an
assignment expression:

procedure-short =
'PROCEDURE* identifier [.] for mal-para meters

:= expression

where "expression" is any expression (possibly an embedded
statement). As an example we have:

•PROCEDURE* REH. (A,B) := A - (A/B) *B

The long form uses the usual seguence of statements,
separated by semicolons and terminated by the end keyword
•END PROCEDURE^. Each entry point occurring in the prefix may
appear as a label on some statement in the scope of the
'PROCEDURE* prefix. If no such label appears on any statement.

Part I — Description of the NAD/I Language

■ -.:*:~. ■..-.. ,..,..(.........

94 Section 5: Statements

it is as if the label were on the first executable statement
within the definition of the procedure. Procedure definitions
may be properly nested within other procedure definitions.

Procedures are defined at compile time only; at run time, a
procedure statement in a statement sequence behaves as an empty
statement in that sequence.

5.. 7.,2 Formaj. Parameters

The formal parameters of a procedure are local variables
which are dynamically "bound" to their storage references when
the procedure is entered. All formal parameters declared in the
procedure prefix are variables usable throughout the procedure
body. For each formal parameter, however, only certain en+ry
points cause it to be bound — namely those entry points whose
"entry-spec"s mention that formal parameter.

A formal parameter, like any other variable, acquires mode
and storage-layout attributes. These may be declared (within
the procedure) in any cf the ways described in Section 3.

Whenever (at run time) a procedure is entered at a given
entry point, the formal parameters specified for that entry
point are considered in the order declared and bound to the
actual parameters (arguments) received from the calling
procedure. There must be at least as many actual parameters as
formal parameters; each actual parameter must be a reference of
the same mode as the corresponding formal parameter. Generally
the storage-layout attributes must also agree, but there are a
few permissible exceptions:

•CHARACTER' mode: The length of the actual parameter may be
greater than the length of the formal parameter,

•VARYING CHARACTER' mode: The «naximum length of the actual
parameter may be greater than that of the formal parameter.

Array modes: The formal parameter may optionally be declared
with an "array-suffix" in which all the "bounds" entries
are the special symbol # . In this case, the number of
dimensions of the actual and formal parameters must agree,
but the bounds values and storage spacing of the formal
parameter are taken from those of the actual parameter (cf.
Section 3.1.2.1). For example:

•DCL* AA «FIXED ARRAY« (#,#) «FLOATING«

However, for «FIXED ARRAY« parameters, greater efficiency
can often be realized if the actual bounds are known and
declared in the procedure.

Part I — Description of the MAD/I Language

1
I
;:

.:

Section 5: Stateaents 95

iLtl-tJ lro£eäure_Retufns

The execution of a procedure ends when any of ««AW»» r
'RETURN TO', or 'END PROCEDURE* is executed. The fonts of these
statements are:

(i) 'RETURN* [expression] [,return-code]

where return-code is the return code value and the expression is
the result value of the procedure. If the return-code is
missing, a return-code of zero is given. If a return-code is
given, it must be a non-negative integer expression. The
"return" is made to the point immediately after the last "call"
was executed.

(ii) 'RETURN TO* S

where s is (1) a formal parameter of the current procedure, and
(2) has 'ENTRY NAHE* mode and has an actual parameter value
which is an entry name for some procedure whose call preceded
the current one in the currently effective chain of "calls".
For example, suppose procedure A1 has called A2, which has
called A3, each call passing as a parameter the entry name L in
A1. Then A3 might contain the statement:

'RETURN TO' S

where S is a formal parameter for which L is the actual
parameter. The next statement executed after the 'RETURN TO*
statement is that denoted by the value of L.

S also can be a variable of 'ENTRY NAHE* mode which has
been assigned a value by means of an assignment operation
located in the procedure which owns the associated entry point.
At the time the * RETURN TO* is executed, the entry name variable
must have a value which points to a currently active block; that
is, the environment information must still be valid.

The execution of *£ND PROCEDURE* , which ends the scope of
a procedure, is permissible and is eguivalent to the execution
of * RETURN* with no result value and no return-code specified.

Part I — Description of the HAD/I language

■ ■ ^■-t«l<»BMWVWri"'™-«rt«-tM™0»B»|jB(»»>f«p»>™>»lw

96 Section 5: stateients

There are several statements for specifying input/output
operations; they are mentioned below. For a complete treatment
of input/output, refer to Section 6; the statements are L
described in Sections 6.8 and 6.9.

'OPEN'
•CLOSE'
'READ DATA'
•WRITE DATA'
'READ'
'WRITE'
'READ UNCONVERTED*
'WRITE UNCONVERTED' Li

L

L
Part I — Description of the MAD/I Language

1 i

Section 5: Statements 97

ÜiJJ pe^^aration statements

The statements in this section have a purely "compile-time"
effect; at run time, they act as "empty" statements.

The 'DECLARE* statement and the inverted declaration
statements are described in Section 3.6; refer to that section.

The 'DECLARE' statement (abbreviation 'DCL') — Section
3.6.1.

Inverted declaration statements — Section 3.6.2.

The 'DECLARE DEFAULT* statement (abbreviation ■DCLD*) is
used to declare default mode and storage class attributes. It
can also be used to control the scope of identifiers referenced
but not declared.

Syntax: * DECLARE DEFAULT* decln-string

This statement has the same effect as the statement

'DECLARE' 'DEFAULT' decln-string

which is described in Section 3.7.2.

Example: 'DECLARE DEFAULT* *INTE6ER*

Part I — Description of the HAD/I Language

98 Section 5: Statements

JxliL- .Tbe Ijjfiiay aj>d_lfiJ(OC£ll..§tat^ff^ts

The 'BEGIN' nd 'BLOCK' statements are compound statements,
consisting of a sequence of constituent statements bracketed by
the compound-statement keyword and an end keyword.

Syntax: statement = 'BEGIH' stmt-seq »END»
| 'BLOCK* stmt-seq 'END'

The 'BEGIN' statement serves only to treat the statement
sequence as a sinqle statement — it has no other effect.
Execution of a 'BEGIN* statement means execution of the
statement sequence.

The 'BLOCK' statement is the same as the »BEGIN' statement,
except that it forms a new b^geje (see Section 7). The scopes of
names and declarations appearing within the * BLOCK* statement
are determined with respect to this block.

Examples:
• BEGIN* T := A; A := B; B ;= T * END*

•BLOCK*
•EXTERNAL' (B1,B2,B3) 'BOOLEAN';
ANTB :* B1 i B2 i B3

'EHD'

Part I — Description of the BAD/I Language

'.■■■'■■ . ■ ■ ■ ■ ■.■..■■■■■■■■.

Section 5: Statements 99

5A11 The 'PRESET* Statement

■PRESET* is a statement used to specify initial values of
variables. An "initial value" is a value assigned to a variable
at the time storage is allocated for the variable. Storage for
■STATIC* variables is considered to be determined at compile
time and allocated just prior to run time. Only ■STATIC*
variables which are not * EXTERNAL* may be preset.

Sint^JLL
statement = 'PRESET* ijst , pre-assign

pre-assign = pre-var :- { li$t , init-value)

pre-var = variable [Ijst { (liqt , integer))]

init-value = const-exprn
| replic-exprn
I empty

const-exprn = constant
I - constant-exprn

replic-exprn = unsigned-integer (ü§t , init-value)

Examples;

of pre-var: BCX
AA(1,-3r2)
CC(2r1) (4) (17)

of const-exprn: 20
"Haw!"
-4 a ('INTEGER SHORT*)
.ENCON. LOGTAN

of replic-exprn: 3(1.2, 7, "AB")
300(0)
20(1.0,8 (0.0), 2.0)

of preset statements:

'PRESET' A := 0, B := 0, CH := "0123"

•PRESET» V(1) := 2., V(«») := 0., V(10) := 10.

'PRESET' AB(1,1) := 1f 1# 2, 0, AB(2,1) := 4(0)

iPte^Egetation

A pre-var specifies either a variable to be preset or a
component of a variable at which presetting is to start. The

Part I — Description of the HA0/I Language

I
;
I

100 Section 5: Stateients

list of init-Talue»s following the M:>N specifies a sequence of
constant values to be pre-assigned to the pre-vac If the pre-
war is a variable of a prieitive node, there should be only one
init-value in the list. If the pre-war is an array or
coaponent-structure variable, then presetting begins with the
1st coiponent and continues with successive coaponents at the
sane structural level. If the pre-var is a coaponent of such a
variable, presetting begins with that coaponent and continues as
above.

An eapty init-value causes the corresponding coaponent to
be skipped without being preset, k Nreplic-exprnM is treated as
an abbreviation for the enclosed list of init-value's written
out "unsigned-integer1* tiaes. The unsigned-integer aust be non-
zero. For exaaple,

2(1,2, ,4)

is equivalent to

1»2, ,a»1,2, ,4 .

The initial values aust have the saae aode as their
corresponding variables or coaponents; no autoaaiic conversion
is performed.

Part I — Description of the BAD/I Language

!

li

ii
li

n
!!

1

!.

:

L

l.

L

L
L

Section 5: Stateieots 101

5.12 UM •MKLUiJSMMSJl UA iSKUU PSBCT* ttiiMliti
•DECLARE CSECT« and •DECLIRE PSECT* are both siaple

ätateaents used to control the naaes given by the coapiler to
sections of the object nodule.

Syntax: stateaent ■ •DECLARE CSECT* identifier
| «DECLARE PSECT1 identifier

The coapiler noraally produces an object prograa segregated
into two sections: (1) a section ("csect") which is never
aodified as the prograa is run and is "shareable** by different
recursion levels in the task and by different tasks in the
operating systea, and (2) a section ("psect**) which contains all
the rest — the variable values and non-shareable text. The
prograaaer aay occasionally need to specify the naaes given to
these sections.

These stateaents cause the specified identifier to be used
as the naae for the specified section. It is the prograaaer*s
responsibility to aake sure that the naae is acceptable to the
operating systea in which the object prograa will be run.

Part I — Description of the HAD/I Language

102 Section 5: Stateaents

5.13 The 'ILLQCiTEV and »DgALLOCATB» Stateient»

These ace staple stateaents which dynaaically allocate and
de-allocate storage foe taciables of based storage class.

Syntax: stateaent ■ •ILLOCATE« variable [, ezpen]
| •DEALLOCATE* variable

Exaaples:

•ALLOCATE« BLOCK

•DEALLOCATE^ BLOCK

'ALLOCATE« HATPIX, H«N*U

•DEALLOCATE» HATBIX

!.

!

i.

1

The •ALLOCATE* stateaent specifies a based variable to *-
receive a new allocation. The ••ezprn", if included, aast be
integer-valued, and specifies the nuaber of contiguous storage
locations (bytes) to be allocated; if the expression is oaitted,
the length attribute (Sec. 3.2.1) of the variable is used. The
storage is acguired (froa the operating systei) and associated
with the based variable. If storage was already allocated for
that variable, the variable*s reference of that storage is lost
(i.e., not saved or autoaatically freed).

The * DEALLOCATE* stateaent is used only to de-allocate the *-
storage allocated to a based variable by an * ALLOCATE*
stateaent. The specified variable is set to "not allocated1*,
and the storage previously allocated for it is freed (returned Li
to the operating systea). If the variable has storage which was
allocated by aeans other than the * ALLOCATE* stateaent, then the
action of * DEALLOCATE* is undefined.

I.

y

Part I — Description of the HAD/I Language

Section 5: Statements 103

•REOIHEMSIOH' is a stateaent for dynaaically aodifying the
diaension attributes of «VÄRYIHG ABBAT*s at run tiae. Befer to
Section 3.1.2.1 (Array nodes) for inforaation on «yABIIMG ABBIY«
aode.

Syntax: stateaent ■ •PEDIBFNSIOM» list , TO-phrase

TO-phrase ■ desig •TO' (list , run-bounds)

run-bounds ■ [exprn ...] exprn

Exaaple:
•REDIHENSION» AA «TO* (Hf0...N)

in the syntax above, "desig" denotes a designator, which
aust have «VARYING ABBAT* node. In each TO-phrase, the nuafcer
of "ran-bounds"s aust egual the declared nunber of diaensions of
the array designated by "desig". Also, "exprn" denotes any
expression whose value is convertible to an integer. The
(optional) 1st exprn specifies the lower bound for that
subscript position; if oaitted, a lower bound of 1 is assuaed.
The 2nd exprn specifies the corresponding upper bound.

For each TO-phrase, the run-bounds expressions are
evaluated, and their values are converted (if necessary) to
integers. The diaension attribute of the array denoted by the
designator is changed to reflect the new subscript bounds.
However, the storage allocated to the array is not changed;
therefore, if the array is in an allocated state (i.e., storage
is allocated for it), then the storage reguireaent of the re-
diaensioned array aust not exceed the aaount of storage
allocated.

For exaaple, if we had declared:

•DECLARE« (VI, V2) «VARIABLE ABBAY* (100),
AD «VARIABLE ABBAY« (30,20)

then we eight write re-diaension stateaents like these:

•BEDIBEHSION« VI «TO« (H)

•BEDIHEMSION« V2 'TO* (0 ... N-1),
AD «TO« (0...K, L*1)

Part I — Description of the HAD/I Language

104 Section 6: Input/Output

Section_6i_Iii£Jii^Oiit£Ut

Before discussing the input/output statements in detail,
several general concepts should be defined.

ÜJJ Datq gets. Records,.and^Files

i
A data set is a collection of data external to the program.

Input, activity transmits data from a data set to a program,
utpiit activity transmits data from a program to a data set. A
ata set consists of discrete re^Qi^ds« each consisting of zero

or more bytes. An input activity, then, transmits one or more
whole records from a data set to a program while an output
activity transmits one or more whole records from a program to a
data set. An input activity is also referred to as ^eadjng
while an output activity is also referred to as yrj^ipg.

A file is a usage of a data set. A file can be opened
either explicitly or implicitly. A file is opened explicitly by
means of an •OPEN' statement. In this case the file is
characterized by the value of the variable of 'FILE HAHE* mode
specified as a part of the 'OPEN* statement. Every explicitly
opened file is a unique file even if it uses the same data set
as another file. A file is opened JLHUAfijJÜLl through the
execution of an input/output statement (other than 'OPEN*) which
references it with no prior implicit opening of the file. The
file referenced is deduced from the data set name given in the
input/output statement and the manner in which the data set name
is specified. An implicitly opened file is characterized by the
value of a variable of 'FILE NAHE* mode owned by the system
input/output support software. This filename variable cannot be
referenced by name, but only implicitly through the
specification of the same data set name in the same manner as
when it was implicitly opened. This will be clarified in
Section 6.3. Note that several files may be open which use the
same data set. The behavior in this case is dependent upon the
system and the type of data set organization.

Part I — Description of the HAD/I Language

Section 6: Input/Output 105

6A2 Types of Input/Outpat Activities

There are four types of input/output activities supported
in MAD/I: data-directed, list-directed, foraat-directed, and
unconverted. This section describes the general characteristics
of these transmission nodes.

§.2.1 Data-directed Tr^nsaissjop

Data-directed transmission permits the user to read or
write self-defining data.

Input; The data are in a form similar to a •PRESET• statement,
consisting of a list of designators, each followed ty an
assignment symbol (or equality symbol) and a list of constant
values to be assigned. The input for a single data-directed
input transmission is free-form and nay span one or more whole
records. The transmission is terminated by a semi-colon in the
last input record. A typical input record is:

A: = -3.2f B: = MS", COMPLXN$aB: = 1.5, Z(2):=1,,5 (2) ;

Output; The data values to be transmitted are specified by a
data-list in the output statement. The data are placed into one
or more output records and consist of a list of designators,
each followed by the value referenced. If a data-list
expression is not a designator (e.g., X+3) , then three asterisks
(***) are printed in place of the designator. The records
produced by a data-directed output transmission are suitable as
input records for a data-directed input transmission; the items
identified with three asterisks are ignored.

6J!.2A2__iisträitected_2£äOsiissio|i

List-directed transnission pernits the user to specify the
designators to which data are assigned or fron which data are
transmitted, without specifying the fornat.

Input; The data are in the forn of free-forn constant values
separated by blanks or commas. The designators to which the
data are to be assigned are specified by a data-list in the
input statement.

Output.; The data values to be transmitted are specified by a
data-list in the output statenent. Each data item is converted

Part I — Description of the HAD/I Language

u

:

106 Section 6: Input/Output

to an external fon (according to its node and value) , and the
external forms are concatenated to form output records. ••*

6A2AJ__£oimätr4i£ected_3£insmission |;

Format-directed transmission permits the user to specify:
(1) the designators to vhich data are to be assigned or from
which data are to be transmitted, through a data-list, and (2)
the form of the data fields in the records, through a format
specification.

Input; The form of the data in the input records is defined by a
format specification. The designators to vhich the data are to
be assigned are specified by a data-list.

Output; The data values to be transmitted are defined by a data-
list. The form that the data are to have in the output records
is defined by a format specification.

^2Ai»__lIacsavs£ied_I^sii£-i!is§ioji

unconverted transmission permits the user to read or write
information directly, with no conversion. The unconverted
input/output statements cause a single record to be transmitted
from or to the data set. The designators to which the data are
to be assigned or from which data are to be transmitted are
specified through a data-list.

.

i

Part I — Description of the MAD/I Language I

Section 6: Input/Output 107

£j,3 Associating Data setg with Files

A data set is associated with a file at the tine the file
is opened. The data set name can be specified in five different
ways in either the 'OPEN* statement (for explicitly opened
files) or an input/output statement other than 'OPEN* (for
implicitly opened files.) These five ways are: (i) through a
unit specification» (ii) through a data set name specification,
(iii) through a character-string specification, (iv) through an
entry-name specification, and (v) through a default
specification. Only one of these five ways can be used in any
one statement.

6..3..J Onit Specification

A unit is a name which is associated with a particular data
set through the job control language of the operating system in
which the MAD/I program is being run. The unit is specified
through the 'UNIT' specification in the input/output statement.
This specification can be an arithmetic expression or a
character-string expression. The values of these expressions
are interpreted in a system-dependent fashion.

In input/output statements other than 'OPEN*, the unit
specification can also be an expression of 'FILE NAHE* mode, in
which case the named file is used. It must have previously been
opened in an 'OPEN* statement.

All implicit references to files which satisfy the
following two rules will be considered as references to the same
file:

1. All references are by means of a unit specification.
2. Either all references are by means of arithmetic

expressions which compare as egual in value or all
references are by means of character-string
expressions which compare as egual in value.

In HTS, the value cf a character-string expression must be
the name of a "logical I/O unit". The valid logical I/O units
are: SCARDS, SPRINT, SPONCH, GUSER, SERCOH, and the numbers 0
through 9. The value of an arithmetic expression must be
integer-valued from 0 through 9 or the address of a "FDOB" as
returned by the subroutine GETFD. Non-integer values will be
truncated to the next lower integer value.

In OS, the value cf a character-string expression must be a
current "ddname". These names are defined through DO job
control language statements. The value of an arithmetic
expression must be integer-valued from 0 through 99. Non-
integer values will be truncated to the next lower integer

Part I — Description of the HAD/I Language

D
108 Section 6: Input/Output

value.
« ■

Examples: (using NTS conventions)

•OPEN« ('ÖHIT« "0Mr
,END OF FILE» MACEHD) ,IJACI.IB H

•OPEN« CONIT« 0, «END OF PILE« MACEHD) »HACLIB
•OPEN* (Or MACEND) ,MACLIB

are all equivalent and open the file HACLIB which uses the data
set associated with the logical I/O unit 0. r •BEAD DATA* ('UNIT' MÄCLIB) L

•BEAD DATA*(HACLIB)

ace equivalent and use the file HACLIB. If HACLIB were opened
with one of the above •OPEN' statements, the data set ultimately
used would be the one associated with the logical I/O unit 0.

•READ DATAM'UNIT» "SCARDS") u

•READ DATA^ ("SCARDS")

ace both equivalent and pecfocm a data-directed input
transmission using the data set associated with the logical I/O
unit SCARDS. The file associated with the unit specification
"SCARDS" will be implicitly opened the ficst time it is
cefecenced thcough the execution of an input/output statement
which specifies it.

:.

L

I'

L
Part I — Descciption of the HAD/I Language

Section 6: Input/Output 109

6X3AJ2 D^tai..set..NaiBe Specification

The name of a data set can be specified through the ■DATA
SET* specification in the input/output statement. This
specification is done through a character-string expression.
The value of this expression is interpreted in a system-
dependent fashion.

All implicit references to files vhich satisfy the
following two rules will be considered as references to the s^ae
file:

1. All references are by means of a data set name
specification.

2. All references are by means of character-string
expressions which compare as egual in value.

In NTS, the value of the character-string expression must
be a file or device name ("FDname") . The name may be a
concatenation of file or device names, each followed by
modifiers or a line number range, as described in the UTS
manual. The FDname need not be followed by a blank. Note that
the NTS term "file1* represents a different concept than the
HAD/I term "file". Note that the conventions governing implicit
references to MAD/I files dictate that "F" and "F " name the
same HAD/I file while "F(1,10)" names a different HAD/I file
although all three forms use the same NTS file. A FDUB is
acguired from NTS each time a HAD/I file is opened with a data
set name specification.

Examples: (using NTS conventions)

•OPEN' ('DATA SET' ••♦SYSHAC", • END OF FILE«
HACEND),HACLIB

•OPEN« (»MACEND,«DATA SET* "♦SYSHAC")»HACLIB

are equivalent and open the file HACLIB which uses the data set
consisting of the MTS file "♦SYSHAC".

'BEAD DATA' (TATA SET' "♦SOURCE^")

performs a data-directed input transmission using the data set
consisting of the NTS FDname ♦SOURCE^, which is usually the
user's terminal (or batch stream.) The file associated with the
data set name specification "♦SOURCE^" will be implicitly opened
the first time it is referenced through the execution of an
input/output statement which specifies it.

Part I — Description of the MAD/I Language

I . ;

110 Section 6: Input/Output

^3^3 Character-string Specification

The character-string specification allows a character-
string expression to be used as if it vere a data set containing
one record. A character-string specification is specified
through the 'STRING DATA SET' specification in the input/output
statement. This specification is a character-string expression.
For output transmission, it is restricted to a designator which
references a character-string.

All implicit references to files by means of a character-
string specification will be considered as references to
different files.

Examples:

•OFEN« ('STRING DATA SET« "data string")fDAIASTHING

opens the file DATASTRING which uses the ^ata set consisting of
one record, the contents of the constant "data string".
DATASTRING can only be used for an input activity, since a
constant cannot be used as a designator.

•DECLARE* S «VARYING CHARACTER•(256)
•OPEN* ('STRING DATA SET* S),DATASTRING

opens the file DATASTRING which can be used for either an input
activity or an output activity. In either case, the data set is
considered to have a capacity of only one record.

•DECLARE^ S •VARYING CHARACTER1(256)
•WRITE DATA« (•STRING DATA SET« S),data-list

performs a data-directed output transmission using the variable
S as the data set. The file associated with the character-
string specification S will be implicitly opened each time it is
referenced through the execution of an input/output statement
which specifies it. Thus the character-string specification S
can be used repeatedly, but only one record can be read or
written with it during each execution of an input/output
statement.

:>art I — Description of the MAD/I Language

I.

.

..

section 6: Input/Output 111

ijii^U Entry-naaie, gpecifjcat^gn

The entry-name specification allows a data set to be
defined in terms of two procedures, one vhicb is called for
every input record, the other which is called for every output
record. An entry-name specification is specified through the
'ENTBIES' specification in the input/output statement. This
specification consists of a variable of 'ENTRY NAHE* mode or a
parenthesized list of two variables of 'ENTBY NAHE1 mode. The
first (or only) variable is called once for every input record
required. The input record must be returned as an expression of
■VARYING CHARACTER* mode. The second variable is called once
for every output record. The call includes one parameter, the
contents of the output record in a variable of * VARYING
CHARACTER' mode. An enc-of-file or end-of-volume condition can
be returned through a return index of 1.

All implicit references to files which satisfy the
following three rules will be considered as references to the
same file:

1. All references are by means of an entry-name
specification.

2. All the variables of 'ENTRY NAHE' mode for reading
compare as equal or all are missing.

3. All the variables of 'ENTRY NAHE* mode for writing
compare as egual or all are missing.

Examples:

'OPEN'('ENTRIES' IN),PROCFILE
'OPEN' («ENTRIES' (IN#OaT)) »PROCFILE
'OPEN' ('ENTRIES' (#OUT)) »PROCFILE

all open the file PROCFILE which calls the procedures IN and CUT
for input activity and output activity respectively. Omitting
the input procedure (example 3) causes an end-of-file condition
on input transmission requests; omitting the output procedure
(example 1) causes an end-of-volume condition on output
transmission requests.

'READ DATA' ('ENTRIES' (IN,OUT))

performs a data-directed input transmission using the data set
associated with the entry-name specification (IN,OUT). The file
associated with this specification will be implicitly opened the
first time it is referenced through the execution of an
input/output statement which specifies it.

Part I — Description of the HAD/I Language

■ :

112 Section 6: Input/Output

A data set is associated with a file by default if none of
the previous four ways of specifying the data set has been used
in the input/output statenent. The default data set for input
is that associated with the systen standard input unit. The
default data set for output is that associated with the systen
standard output unit.

All inplicit references to the default iuput are considered
to be references to the saa© file. All inplicit references to
the default output ace considered to be references to the fiftlfi
file, but different fron the file assuned for default input.

In NTS, the default data set for input is that associated
with the logical I/O unit SCARDS; the default data set for
output is that associated with SPRINT.

In OS, the default data set for input is that associated
with the ddnane SYSIN; the default data set for output is that
associated with STSPRIMT.

Exanples: (using NTS conventions)

•OPEN1 ('END OF PILE* Ar
(EID OF VOLUHE» B)rFRAHE

•OPEN1 (,A,B),FMAnE

are equivalent and open the file FHAHE which uses the systen
standard input unit (SCARDS) for input and the systen standard
output unit (SPRINT) for output.

•READ DATA*

performs a data-directed input transnission using the default
input file which is associated with the logical T/O unit SCARDS.
The default input file will be inplicitly opened the first tine
it is referenced through the execution of an input/output
statenent which specifies it.

Part I — Description of the HAD/I Language

.

1
Section 6: Input/Output 113

6.» film Attribaf«

Bach file has a collection of attributes associated with
it. For explicitly opened files, the attributes and their
values can be specified in the •OPEN* stateaent. Attributes
which are oaitted are given default values. For implicitly
opened files, all attributes are given default values. The
value of aost file attributes can be overridden in any
input/output stateaent for the duration of the execution of that
stateaent.

Lssociat£d_lit^tbfi_£üe

The aost iaportant attribute of a file is the data set name
used by the file and the manner in which this name was
specified. This attribute has been described in Section 6.3.
This attribute cannot be overridden in an input/output
statement.

6.4.2 End-of-file File attribute

The end-of-file file attribute is specified through the
*EMO OF FILE' specification of an input/output stateaent and has
as its value an entry-name variable. This entry-name is called
whenever an end-of-file condition is sensed from the data set
associated with the file in response to an input reguest. The
default end-of-file attribute value is the system subroutine
which terminates execution. The end-of-file file attribute can
be overridden in an input/output statement. In this case its
value can be either an entry-name or a transfer-point.

In NTS, the default end-of-file attribute value is the
system subroutine SYSTEM.

Examples:

•OPEN»(MSPBINTN,HACEND),FNAHE
•OPENM'BHD OF FILE* HACEHD, •UHIT« "SPRINT") ,FNAfJE
•BEAD DATA» (fNAHE, NEHEHD)
•READ DATA* ('END OF FILE' NENEMO# * OMIT* FNAflE)
•READ DATA* (»END OF FILE* NEHEND)
»READ DATA* (»HEBEND)

ixÜ^J &£dr££r£SlM£-Ill£-ill£i£ilte

The end-of-volume file attribute is specified through the
•END OF VOLUME» specification of an input/output statement and
has as its value an entry-name variable. This entry-name
variable is called whenever an end-of-volume condition is sensed

Part I — Description of the HAD/I Language

114 Section 6: Input/Output

u
1.

fro« the data set associated with the file in response to an
output request. The default end-of-voluae attribute value is
the systen subroutine which t«£Binates execution. The end-of-
voluae attribute can be overridden in an input/output statesent.
In this case its value can be either an entry-nase or a
transfer-point*

In NTS, the default end-of-voluse attribute value is the
systen subroutine SYSTEM.

i

Examples:

•OPEN» (MSPRINTM,,NACEND) »FHABE
•OPEN* ('END OF VOLUME» HACEND,•OMIT* nSPBXMTM) «FMAHE
•WRITE DATA* (FNAHEfNEHEIiD) ,data-list
•WRITE DATA*(*EMD OF VOLUME* MEUEND,•OMIT* FMARE),data-

list
•WRITE DATA« («END OF VOLUME* NEMEMD)#data-list
•WRITE DATA^ (,NEWEND) ,data-list

^ÜxÜ—i£MI-fils_AltjLiluUe

The error file attribute is specified through the 'ERROR*
specification of an input/output statesent and has as its value
an entry-naie variable. This entry-nane variable is called
whenever an error condition is sensed fron the data set
associated with the file in response to an input or output
request. The default error attribute value is the systen
subroutine which terainates execution abnoraally. The error
attribute can be overridden in an input/out: i/t statement. In
this case its value can be either an entry-naste or a transfer-
point.

In NTS, the default error attribute value is the system
subroutine ERROR.

Exanples:

•OPEN» ("SPRIHT'S^MACERS) »FHAHE
•OPEN^ (•ERRORS MACERR, • ONIT^ MSPBIMTM) r FRAME
•WRITE DATA« (FNAME,,NEWERR),data-list
•READ DATA* (FNAME, rNEWEBR)
'WRITE DATA^ (•ERROR* NEWERB,*ÖNIT* FNAME)rdata-list
•READ DATA' ('ERRORS NEWEBB,*UMIT* FNAME)
•WRITE DATA^ (•ERRORS NEWERR) »data-list i-
•REAJ DATA^ ('ERROR« NEWERB)
•WRITE DAT' ' (,,MEWERR) ,iata-list
•READ DATA' {,,NEWERR) L

L
Part I — uoscription of the HAD/I Language

.

..

..

.,

V

:

Section 6: Input/Output 115

fcAi»A5 BuinmAaafliA Uli-ltl£itoti
The aaxiBUB-length file attribute is specified through the

'nAX LENGTH* specification of an input/output statement and has
as its value an arithaetic expression or a parenthesized list of
tvo arithmetic expressions. If only one expression is given,
its value, truncated to the next lower integer value, is taken
as the ■axinuB input and output record length in bytes. If two
expressions are given, the value of the first, truncated to the
next lower integer value, is taken as the Baxiaun input record
length in bytes; the value of the second, siailarly truncated,
is taken as the naxiaua output record length in bytes. The
default aaxiaua-length file attribute values are the aaxiaua
input and output record lengths allowed for the data set
associated with the file. The aaxiaua-length file attribute can
be overridden in an input/output stateaent.

In RTS, the default aaxiaua-length attribute values are the
aaxiaua input and output record lengths as returned by the
subroutine GDIMFO.

Examples:

•OPEN'("SPRINT",«RiX LENGTH* 133) ,FNAHE
• OPEN* (NSPBINTM,*HAX LENGTH* (255,71)) ,FNANE
•WRITE DATA*(FNAHE,*MAX LENGTH* NEWLN),data-list
•READ DATA*(*HAX LENGTH* NEHLN)

JxitaS, . BfiAfl-Illl, ItttibJlfi
The echo file attribute is specified through the •ECHO*

specification of an input/output stateaent and has as its value
any operand acceptable as a unit specification. Every
input/output transaission using the file is echoed on the unit
specified by the echo file attribute. The default echo file
attribute value is no echoing. The echo attribute can be
overridden in an input/output stateaent.

Exaaples: (using NTS conventions)

• OPEN* ("SPRINT**, *ECHO* •»SERCOH«*) ,FRAME
•READ DATA*(»ECHO* "SPRINT")
•HEAD DATA* (*ECHO* FNAHE)

Part I — Description of the HAD/I Language

116 section 6: Input/Output

The ■iscellaneous input/output specifications are used to
specify both required and optional inforaation «ithin an
input/output stateient.

k foraat can be specified through a 'FOBHiT* specification
in an input/output stateaent. The foraat is used in foraat-
directed transaission to control the form and conversion of
data. This specification is done through a character-string
expression, «hose value is the foraat. The value of this
expression is interpreted in a systea-dependent fashion; there
is no specification of a foraat language as a part of MAD/I.

In HTSf IOH360 is used as the foraat interpreter. The
character-string expression must be a valid foraat as described
in the IOH360 description in the UTS aanual.

ExdBplos: (using NTS conventions)

•WHITE« C" X^FIO-O,« X^X^PIO.O»"),!,!*«
•»UflM^VH* "SEBCOH^'POBHAT* ••• PILE • ,€,* HAS BEEN

CSEATIC.'*") »FHAHE

b.5i2__Ling„SBecif1cätion

A line specification is used to perfora randoa accesses to
a data set. The line is specified via the 'LIME* specification,
which specifies an arithaetic expression. The value of this
expression is interpreted in a systea-dependent fashion to
determine the position in the data set at which the input/output
activity of the current stateaent is to begin. Further
input/output activity will be conducted in a sequential fashion
until the next occurrence of a line specification.

In MTS, the line specification can be used for line files
or sequential files. For line files, the value of the
arithaetic expression is interpreted as the line nuafcer,
multiplied by 1000, of the line to be next read or written.
That is, the expression aust have a value of 1500 to read or
write beginning at line 1.5 of the file. This is the saae value
as used by the HTS input/output subroutines, such as SCABCS.
For sequential files, the value of the arithaetic expression
must be a value returned by a »LAST LINE' specification in a
previous input/oatput stateaent. This value is used internally
to retrieve the corresponding note-point information. Both the
r^ad and write pointers are updated with the appropriate values.

Part I -- Description ot tne «AD/I Language

wmrmmmmmmmammmm^mmm

Section 6: Input/Output 117

Exaaples: (using HTS conventions)

•BEAD» (MI5*Mf0f»LIHE» 1000)»NUMB
•«BITE« ("I5*M,0,«LINE» A*B) »NUMB

k*.$*.I täst-line_S£ecification

A last-line specification is used to record the current
position in a data set so that a file can later be re-positioned
to that position in the data set. This is specified via the
•LAST LIHE' specification, which consists of a designator for an
arithmetic value. The input/output system returns a value which
can be used in the 'LINE* specification to position the data
set. This returned value is treated in a system-dependent
fashion.

In HTS, the last-line specification can be used for any
data set. For line files, the value returned is the line number
of the last record read or written by this statement, multiplied
by 1000. That is, the value 1500 is returned if 1.5 was the
line number of the last record read or written by the statement.
This is the same value as used by the HTS input/output
subroutines, such as SCABOS. For sequential files, the value
returned is a code used internally to retrieve the note-point
information corresponding to the last record read or written.
For all other types of data set organization, a pseudo line
number is returned as computed by HTS.

Examples: (using HTS conventions)

•BEAD» (MI5*,,
#0,«LAST LIHE« LLIHE) , NUHB

•WBITE« ("IS^'VLAST LIME» LH0H),NUHB

A last-length specification is used to obtain the length,
in bytes, of the last record read or written by the input/output
statement. This is specified via the »LAST LENGTH*
specification, which consists of a designator for an arithmetic
value.

Examples:

•BEAD UNCONVERTED* (0,«LAST LENGTH* N),ABBA¥
HRITE DATA (*LAST LENGTH* LBN),data-list

Part I — Description of the HAD/I Language

118 Section 6: Input/Output

fi^fi_-Iü£ilt/2at£iit_5eecilication_Süaa4i^

The folloving table saaiacizes all the possible
input/output specificatipos and the possible nodes of their
value expressions.

£eil££d fUe_AtI? Desianato£? £ejLii5sikiS_!lfii«s

•DATA ScT« Yes« Mo Character-string

•ECHO* Yes No Arithnetic
Character-string
Filenane

•END OF FILE« Yes Mo Entry-nane
Transfer-point l

•END OF ?OLlIHE• Yes Mo Entry-naie
Transfer-point *

•ENTBIES» Yes* No Entry-nane
Tuo entry-nane *

,eilOB, Yes NO Entry-nane
Transfer-point 1

•FOFHAT' No Mo character-string

•LAST LENGTH* No Yes Arithnetic

•LAST LINE» No Yer Arithmetic

•IIME* No No Arithnetic

•TAX LENGTH* Yes No Arithnetic
Two arithnetic 2

•STRING DATA SET^ Yes* Yes» Varying-character

•UNIT« Yes* No Arithnetic
Character-string
Filenane

(1) Transfer-point expressions cannot be used in *OPEN*
statements.

(2) Two expressions are represented as a parenthesized list of
two exoressions.

O) Need not be a designator for input activity.
(4) These s^ >. ifications are used to denote the file to be used;

hence, at most cue of these can be given per input/output
^tcitenent.

'art I — Description of the HAD/I Language

.

Section 6: Input/Output 119

1^7 .Pätj'^igts

A data-lj.st is used to specify the designators to which
datd are to be assigned (for input activity) and the data values
to be transmitted (for output activity.) The elements of a
data-list may be either block-elements or expressions. For
input activity, the expressions are restricted to designators.
For example, the data-list

i, xo, c

is valid for output activity but not for input activity, because
X+3 is not a designator. In either case, it should be
understood that expressions include embedded statements. For
input activity, further references involving designators earlier
used as data-list expressions refer to the new value just read.
For example, N,MN) uses the new value of N in forming the
reference to A(N).

6AIAJ__filQCk_Jlements

A block-elea^nt is a pair of subscripted elements from the
same array separated by an ellipsis (without commas). The
subscripts may be arbitrarily complex. An example of a block-
el« ment is:

A(If J) ...A(I«3,K)

The block-element represents all the elements of the array, from
the first-named element through the second-named element,
seguencing through the elements in the order determined by the
array sequencing rule (Sec. 3.1.2.1). For example, if we have
declared

A 'FIXED ARRAY« M«.«1#2,0...2)

then

A(0,1,1)...A(0,2,2)

represents the five elements

A(0,1,1), A(0,1,2), A(0,2,0), A(0,2,1), A(0,2,2) .

The number of array elements represented by a block-element can
vary during execution as the subscript values vary. Foe
example, B(1)...B(N), where B * as been declared an array with
one dimension, represents N array elements.

Part I — Description of the HAD/I Language

120 Section 6: Input/Output

^.2^ A£iai_|x2tessions

An expression whose result is of an array «ode represents
all the elements of the array, sequencing through the elements
in order. For example, if ve have declared

C «FIXED ARBAY« (-1...1,2)

then the use of C as an expression in a data-list represents the
six elements

C(-1,1), CM,2), C(0,1), C(0#2), C(1f1), C(1,2) .

6i2i3__Coi£pnent2St£ucture_£x£iessifijis

An expression whose result is a conponent structure
represents all the elements of the conponent structure fron
left-to-riqht in the sane order as declared. For example, if we
have declared

D 'COMPONENT STRUCTURE« (** «INTEGER«,dB «FIXED ARRAY«(2))

then the use of D as a data-list expression represents the three
items

DSSA, D$aB(1) , D$aB(2) .

6x7Aa Upsuppoyted Hodes

Expressions whose result is one of the following modes
cannot be used as data-list expressions: «ALTERNATE«, «BIT*,
•ENTRY POINT«, «FILE NAHE«, and «TRANSFER POINT».

tart: I -- description of the HAD/I Language

Section 6: Input/Output 121

An eabedded stateaent can be used as an expression in a
data-list. For prefix statements# the expressions in their
scope (i.e., the expressions following the conaa in the short
fora or the expressions deliaited by seaicolons in the long
fora), vill be called gggpe .gxpjr^<gsi9gsT In the execution of
the eabedded stateaent in the data-list, any scope expressions
which appear in a 'LIST* stateaent are treated as a part of the
data-list. For an input activity, the scope expressions of a
'LIST* stateaent are restricted to designators.

Exaaples:

The data-list

H, ('FOR« I := 1r1#I>M, «LIST« X (I))

is equivalent to the data-list

N, 1(1)...X(H) .

The data-list

N, («FOR» I := 1r1#I>N; «LIST» X(I)fY(I); «IF» I>1,
•LIST» Z(I) »END»)

is equivalent to

N,X(1),y(1),X(2),y(2),Z(2)#X(3)#Y(3),Z(3)# —
,X(N),Y(N)#Z(II) .

Part I — Description of the MAD/I Language

122 Section 6: Input/Output

6.8 Syntax of the Ipput/oatput stateie^ts

An input/output statenent (other than »CLOSE') consists of
a keyword, followed by an optional parenthesized specification
list, optionally followed by a conea and a data-list. A close
statement consists of the keyword •CLOSE' followed by a file'
name expression.

I/O-statement = I/O-keyword [I/O-spec-list] [, data-list]

close-statement = 'CLOSE' filename-expression

Examples:

•OPEN« ("SPRINT",MACEND),FNAHE
•READ DATA'
•REACSA,BfC
•CLOSE« FNAH1

The permissible input/output statement keywords are:
•OPEIM, •READ', 'READ DATA', 'READ ÜNCOHVEBTED«, 'HRITE', •HRITE
DATA^, and •HRITE UNCONVERTED*.

I/O-keyword ■ 'OPEN' | 'BEAD* | «BEAD DATA* | 'BEAD
UNCONVEBTED' | '«BITE* | •WRITE DATA' |
'WRITE ONCONTEBTED*

An input/output specification list consists of a
parenthesized list of one or more specifications which can be
qiven in a positional or a keyword form, or a mixture of both.
For each input/output statement, the input/output specifications
are each assigned a position in the list, from most-corntonly-
used specification (on the left) to least-commonly-used
specification (on the right). A specification can he given in
positional form by putting its expression in the appropriate
position in the input/output specification list. Specifications
can be skipped over in the positional form by using successive
commas. Positional specifications cannot be used to the right
of the first keyword specification in the list. A specification
can be given in keyword form by preceding its expression by +he
appropriate keyword. A keyword specification can be given in
any position in the li t. The syntax is as follows:

Part I — Description of the HAD/I Language

Section 6: Input/Output 123

I/O-spec-list = (I/O-Keyword-spec-list)
I (I/o-positional-spec-list)
I (I/O-positional-spec-list ,
I/O-keyword-spec-list)

I/O-positional-spec-list = list , I/o-spec-expr

I/O-keyword-spec-list = li§t , { I/O-spec-keywori
I/O-spec-expr)

I/O-spec-keyword = «DATA SET« | »ECHO« | «EHD OP FILE» |
•END OF VOLUME« | •ENTRIES* | •EBfiCB» |
•PORHAT« | «LAST LENGTH* | *LAST LINE*
| 'LINE* | HAX LENGTH* | 'STRING DATA
SET* | *ÜNIT*

I/O-spec—expr = expression
I (expression , expression)
I (, expression)

Exanples:

(NSCABDSN#ENCFILE)
("SCARDS"#ENDFILE,*HAX LENGTH* 72)
(«MAX LENGTH* (72,132))
(NSCABDSN,vGOEBB)

A data-list consists of a list of expressions and block-
eleaents, separated by coanas. Data-lists have been discussed
in Section 6.7.

data-list = list , { expression | block-element)

block-eleaent « array-eleaent-desiq ... array-eleaent-desig

Part I — Description of the HAD/I Language

12U Section 6: Input/Output

A brief description of the input/output stateaents is given
below. Each descriptive section begins with the statement
prototype followed by a list» in positional order, of the
acceptable specification eleients (vhich nay, of course, take
default values) •

Stateaent Prototype:
•OPEN' [I/O-spec-list] , filenaae-designator

Allowable Specification Keywords: »ÖHIT«, «EMO OF FILE*# «END OF
VOLUME* t • ERROR« , »ECHO», • HAXLEIIGTH» , •DATA SET* # * STRING
DATA SET«, •ENTRIES•

The file referenced by the filenaae-designator is
explicitly opened. The values of its file attributes r.te
deterained by the l/o-spec-list. Those attributes which are not
given values take on default values. All file attributes (other
than the data set associated with the file) can be overridden in
input/output stateaents which reference the file. A file which
has been explicitly opened can be used in the unit specification
of all input/output stateaents other than *0PBI* until the file
is closed through a * CLOSE* stateaent.

Exaaples:

•OPEM1 (O.NACEND) ,HACLIB
•OPEN1 ('END OF FILE* SAGEND, •UNIT* 0),RACLIB
•OPEN» (»BACEMD,« DATA SET» ••♦STSBAC") »BACLIB
•OPEN* («ENTRIES« (IN,OUT)) »PROCFILE
•0PEN«,DEFAÜ1TFILE

Stateaent Prototype: «CLOSE« filenaae-expression

The explicitly opened file specified by the filenaae-
expression is closed. The filenaae-expression cannot be used in
any further input/output stateaents without being opened again.
No other copies of the value of the filenaae-expression can be
used in further input/output stateaents, even if the file is
opened again. If * data set naae specification (•DATA SET*) was
used when the file ias opened, the systea in which the BAD/I
proqrcia is being run is notified that this usage of the data set
has ceased. The systea is then free to close the data set when
it feels that is appropriate.

Exaiples:

Part I — Description of the BAD/I Language

:

i
i
i
:

.:

:

li

Section 6: Input/Output 125

•CLOSE1 HACLIB
•CLOSE1 FIL£ABBAy(I*3)

^9^2_DÄtaz£i£S£ted_I/0

Stateaent Prototype: «BEAD DATA» [I/O-spec-list] [, data-list]

Allowable Specification Keywords: •UNIT', •END OF FILE*r
•ERROR», 'LINE', 'LAST LINE«, •LAST LENGTH*r «ECHO«, «HAX
LENGTH»r »DATA SET», »STRING DATA SET», »ENTBIES'

This stateaent causes a data-directed input transaission.
The format of acceptable input records is discussed in Section
6.2.1. If the data-list is given, the designators allowed on
the input records are restricted to those which reference the
variables specified in the data-list. If no data-list is given,
any designator which is valid within the block containing the
»READ DATA» statement can be given in the input records. All
variables known within the block which can be specified in the
input records as described above will autoaatically be entered
(at compile tiae) in the run-tiae syabol table.

Exaaples:

»READ DATA»
»READ DATA» (»ECHO* •»SPRINT")

.. »READ DATA» (»DATA SET» NINITVALOESN)
a 'READ DATAS A,B,COBPLXN,Z

each could be used to read the record:

A: = -3.2, B:»MSM, COHPLXN$aB: = 1.5, Z (2):»!,, 5(2) ;

The first three exaaples would force all the variables known
within the block containing the •BEAD DATA* stateaent into the
run-tiae syabol table, while the last exaaple would force only
A, B, COHPLXN, and Z into the run-tiae syabol table.

ßata-fii£ected_0ut2iit

Stateaent Prototype: •HBITE DATA' [I/O-spec-list] , data-list

Allowable Specification Keywords: •ONIT», »END OF VOLOHE*,
•EBROR^, »LINE«, »LAST LINE», ^LAST LENGTH^, •ECHO», »HAX
LENGTH», »DATA SET», »STRING DATA SET», »ENTRIES»

Part I — Description of the HAD/I Language

— ■ -■ ■ . .-■. .-^-^... - --■- * "- - - -■ ■ - -

126 Section 6: Input/Output

This statement causes a data-directed output transnissicn.
The toumat of the output records produced is discussed in
Section 6.2.1. Symbol table entries for each element in the
data-list will automatically be entered in the run-time symbol
table.

Examples:

•WRITE DATA» t%*3tk

would produce an output record like:

*♦♦ = 10, A = -3.2;

Also,

•WRITE DATAM'CATA SET1 "NEWVALUES") ,Z (2) . . . Z (5)

would produce an output record like:

Z(2) = 1,5, 3.6, -10.2, 8.63;

List-Directed Input

Statement Prototype: 'READ* [I/O-spec-list] , data-list

Allowable Specification Keywords: a, «UNIT', 'END OF Fill*,
•ERROR', •LINE«, «LAST llll», «LAST LrHGTH«, »ECHO«, »HAX
LENGTH^, «DATA SET^, «STHIHG DATA SET», •EMTHIES,

This describes a list-directed input transmission. The n
represents the •FORMAT^ I/O specification. List-directed
input/output is distinguished from format-directed input/output
by the absence of the •FORBAT^ specification. The format of
acceptable input records is discussed in Section 6.2.2. Symbol
table entries for each data-list element will automatically be
entered in the run-tine symbol table.

Examples:

•READ* ,N,N,X (1)...X(N)
•READ^ (,0) ,N,«,X(1)...X(N)
•READ« (•UNIT^ 0) ,N,H.X(1) ...X(ll)

each could be used to read the record:

4 , "CASE 1", 1.5, 3.2 , -.3, 16

Part 1 — Description of the HAD/I Language

I
I
I
I
1

Section 6: Input/Output 127

list-Directed Output

Statement Prototype: «MBITE' [I/O-spec-list] , data-list

Allowable Specification Keywords: a, 'OMIT', »EMD OF VOLÜHI«,
•EBBOB», «LINE«, «LAST LINE», «LAST LEHGTH', •ECHO1, »HAX
LENGTH», »DATA SET', «STBIHG DATA SET», «EHTBIES1

This describes a list-directed output transaission. The a
represents the •FOBHAT« I/O specification. List-directed
input/output is distinguished fro« foraat-directed input/output
by the absence of the 'FOBHAT* specification. The foraat of
output records produced is discussed in Section 6.2.2. Syabol
table entries for each data-list element will autoaatically be
entered in the run-tiae syabol table.

Exaaples:

•WBITE', M,"VALUES ABE:M,X(1)...X(H)
•HBITE((,0), N,"VALUES ABE: NrX (1) . . . X (N)
•WBITE« (•OSII« 0), UPVALUES ABE: "»X (1) . .. X (H)

each would produce a record like:

4 VALUES ABE: 1.5 3.2 -0.7 16.0

äii-iÜ—foitat-pifegtcfl I/O

frIl£lz£l£Sc£fid_IaPfi£

Statenent Prototype: »BEAD1 I/O-spec-list , data-list

Allowable Specification Keywords: «FOBHAT«, «OlilT«, «EHE OF
FILE«, «EBBOB«, «LINE«, «LAST LINE«, «LAST LENGTH«, «ECHO«,
•HAX LENGTH«, «DATA SET«, «STBING DATA SET«, «ENTBIES«

This describes a foraat-directed input transaission, as
described in Section 6.2.3. Foraat specifications theaselves
are discussed in Section 6.5.1.

Examples:

•BEAC« (MI5*"),N
•BEAD« (••I5*M,0),N

each could be used to read the record:

aaa3a

Part I — Description of the HAD/I Language

 ■ : ■ ■ ■ ' '■ ' '■■■ V ■ ■-^-!P?trT-~— ■-■~l^*'-~ '•■",■.■

' ' "—,^,,^™-

128 Section 6: Input/Output

where each a represents a blank.

lorgat-jjiiegtel Output

Statement Prototype: •HBITE» I/O-spec-llst [, data-list]

Allowable Specification Keywords: •POSHAT', ,ülIIT,r «END OF
VOLOHE', •ERROR«, •LINE«, •LAST LIHE*V •LAST LEHGTH*v

•ECHO«, 'MAX LEHGTH', «DATA SETS •STRING DATA SET1,
•EHTRIES«

This describes a fonat-directed output transsission, as
described in Section 6.2.3. Foraat specifications theaselves
are discussed in Section 6.5.1. The first character of the
output line aay be treated as a logical carriage control,
depending upon the systea in which the HAD/I prograi is being
run and the type of the data set organization.

Exaaples:

•WRITE»("'eEBTEB THE FILE BABE:»*")

will produce the output record:

6ENTER THE FILE NAHE:

In NTS, the "6" will be treated as a logical carriage control
which suppresses a line-feed at the end of the line if the data
set is a terainal.

•WRITE' (•'•X = ',F3.2*") ,X
•WRITE' ("•X«',F3.2*,,,0) ,X

each would produce an output record like:

X=315. 52

6A9A5 üflcasvettgcLi^S

JÜJ3£5M§JEteä_lMüti

Statement Prototype:
•READ UNCONVERTED' [I/O-spec-list] , data-list

Allowable Specification Keywords: 'UNIT', 'END OF FILE',
'ERROR', 'LINE', 'LAST LINE', 'LAST LENGTH', «ECHOS 'HAX
LENGTH', 'DATA SET', 'STRING DATA SET', «ENTRIES'

Part I — Description of the HAD/I Language

/

Section 6: Input/Output 129

/ This statement causes an unconverted input transmission as
described in Section 6.2.4. Exactly one record will be read.
The record must have been written vith a •WRITE UNCONVEBTED»
statement. The data-list items must agree in mode with those
specified in the •WRITE UNCONVERTED• statement which produced
the record. Symbol table entries for all the variables which
are referenced in the data-list will automatically be entered in
the run-time symbol table, unconverted input/output is the most
efficient type of transmission because conversion is not needed.

Examples:

•REiC UNCONVERTED1 , IJ,X (1) . . .X (N)
•READ UNCONVERTED» (0) , H#X (1)...Z(N)

Onconvrfd Oat out:

Statement Prototype:
•WRITE UNCONVERTED* [I/O-spec-list] , data-list

Allowable Specification Keywords: •UNIT«, 'END OF VOLUME«#

•ERROR', •LINE', •LAST LINES •LAST LENGTH«, •ECHO*, •WAX
LENGTH', 'DATA SET', 'STRING DATA SET*, 'ENTRIES^

I
— This statement causes an unconverted output transmission as

described in Section 6.2.4. Exactly one record will be written.
The record can be read only with a •READ UNCONVERTED* statement
whose data-list items agree in mode to those specified in the
•WRITE UNCONVERTED« statement which produced the record. Symbol
table entries for all the data-list elements will automatically
be entered in the run-time symbol table. Unconverted
input/output is the most efficient type of transmission because
conversion is not needed.

Examples:

«WRITE UNCONVERTED«, N,X (1) . . . X (N)
•WRITE UNCONVERTED* (0) , T, X (1) . . . X (N)
•WRITE UNCONVERTED^,N*3,H,X(1,1) ...X(NO,H)

Part I — Description of the HAD/I Language

; ■

130 Section 7: Program Structure

■Section 7; Eloaraa_Stru£tU£e.

1*1 Bi2ck_StEVictuie

Like other languages such as PL/I and ALGOL 60, HAD/I
includes the concept of block structure.

There are two kinds of blocks: coapound-statenent blocks
and procedure blocks.

A C0"PQaad~?t3tgPfe8$_ ,^logk is a »BLOCK1 statement
(Sec. 5.10). The block begins with the statement keyword
•BLOCK«, enas with the corresponding end keyword *EMD'f and
contains all the intervening text. If the statement is labeled,
the label is not contained in the block.

A MLflfilAm bloclc is a •PROCEDURE' stateaent (Sec. 5.7.1).
The block begins with the stateaent keyword 'PBOCEDOBE*, ends
with the corresponding end keyword («EHD PBOCEDOBE* or •END8),
and contains all the intervening text. If the stateaent is
labeled, the label is Qgt contained in the block. Both the
short-fora and the long-fora •PBOCEDOBE* stateaents are blocks.

Blocks aay be properly nested; a block aay contain other
blocks, which aay in turn contain other blocks. Be will say
that a portion of text T (a syabol, expression, or stateaent) is
iMefnal to a block B, and that B pyOBStlT Cfllt^iM T« if and
only if:

(1) B contains T, and

(2) there is no block C such that B contains C and C
contains T.

Every nAD/I prograa is a block — eit'ier a coapound-
stateaent block or a procedure block. It is called the
outermost block, and is not internal to any block. Every other
block in the program is internal to exactly one block.

Part I — Description of the aAD/I Languaoe

,.,. .,„.....,

Section 7: Program Structure 131

l££s

The block structure of a prograa provides a convenient
fraievork in vhich to define the "scope of naaes" and a "re-
naming conv ntion". He shall take "naaes" to mean id^ntif j.ers
only, although these concepts could potentially be extended to
operators and keywords as well.

The re-naiinq convep^iop allows the sane seguence of
source-prograa characters (i.e., the sane synbol) to be used to
represent wore than one naae in the prograa, provided that the
different usages are disjoint, so that each instance of the
symbol represents a well-defined naae.

Ezaaple:
«PROCEDURE* AA;
•INTEGER1 I, J, K;
stat-seg-Al;

•PBOCEDORE* BE;
•INTEGER1 I, J, L;
stat-seg-B;
•END PROCEDURE;

stat-seg-A2;
•END PROCEDURE*

In the above example, the four syabols I, J, K, and L are used
to represent sjx different identifiers (naaes):

I in block AA, but not block BB;
J in block AA, but not block BB;
K in block AA;
I in block BB;
J in block BB;
L in block BB.

The scope of a naae is the union of all portions of a
prograa (or a linked set of prograas) in which the name is
"kaown"; i.e., all places where it aay be used. (See also
Section 3.3.) A naae is '• known" in a portion of text I if an
instance in T of the syabol representing the naae is recognized
as an occurrence of that naae.

Every name must be declared (explicitly or implicitly) in
some block (see Sections 3.5-3.7). The scope of a given naae N
can be determined as follows (let S be the symbol representing
H):

(1) The scope of N includes all text internal to the block B in
which N is declared (B is the block to which the
declaration of N is internal).

Part I — Description of the HAD/I language

, ■

132 Section 7: Program Structure

(2) If the scope of N includes declarations that N is (MOTNEH*
or »GLOBAL

1
, the scope of II is extended Noiit«ardN

accordinaly (see Sec. 3.3). Multiple declarations of S are
permitted so long as they do not conflict, but only one
node declaration is allowed.

(3) Let B1 be the smallest block containing all the scope of N
(B1 either is B or contains B). The scope of II is nov
extended "inward" into all blocks internal to Bl, and all
blocks internal to those, etc., jJClgl that the scope of M
is pot extended into any block which properly contains the
scope (or pact of the scope) of any other naae N*
represented by the saae synbol S.

(<0 Naaes declared •EXTERNAL* or • ACCESSIBLE4 are called
"external" nanes. If two or acre external naaes are
represented by the sane syabol, they are aerged into a
sipgle naae whose scope is the union of the individual
scopes. The attributes of the naaes aust not conflict.

Part I — Description of the HAD/I Language

■ ■ inwumiff^—HWü

Section 7: Program Structure 133

7A3 Block stmctuye at Bun tjae

At run tine, blocks are ^ctiivate4 (entered) and teritpate^i
(exited) in a dynamic sequence determined by the ordei of
execution of the program.

A compound-statement block is activated vhen control passes
through the statement keyword (*BLOCK*} for the block. It is
terminated when control passes through the end keyword f*£HD*)
for the block, or when execution of a *G0 TO* statement
transfers control to a point not im the block.

A procedure block is activated when any one of its entry
points is called. It is terminated in any of the ways described
in Section 5.7.3.

Recursive procedures have not yet been defined in the HAO/I
language.

Part I — Description of the HAD/I Language

"**mmiim^!nemis.»manm»

134 Section 8: Coapile-Tiae Facility

Soietines it is useful to be able to perform operations
that result in some change in the source text. These operations
or coaputations ace performed at coapilation time and not at run
tiae. MAD/I has scae facilities for performing conpile-tiae
operations.

8.1 The 'SUBSTITUTE' Stateaent

The 'SUBSTITUTE* statement may be used to associate a given
symbol (other than a constant) with an arbitrary sequence of
symbols at translation tiae. The fora of this stateaent is

•SUBSTITUTE« X SI S2 ... Sn »END SUBSTITUTE'

where X and SI through Sn are legal HAD/I syabols and X is not a
constant. After the occurrence of this stateaent, each
occurrence of the syabol X vill be replaced by the sequence of
symbols SI through Sn.

Substitution would noraally be used for representing either
repetitious portions of a prograa or soae seguence occurring in
many parts of a prograa and changing froa translation to
translation.

Note that Si through Sn aust be coaplete syabols. Also,
the context in which X occurs will in no way affect the
recognition of the syabols SI through Sn.

Since the substitution of a syabol is effective only after
it has been defined by a 'SUBSTITUTE* stateaent, that syabol aay
have had a different meaning (i.e., aay have been a variable,
operator, constant, etc.) previously. Whenever a substitution
definition is assigned to a syabol» the previous aeaning is
pushed down. Previous definitions of a syabol aay be restored
by means of the 'POP SUBSTITUTE* stateaent, which has the fora:

'POP SUBSTITUTE' X

This will cause the last previous aeaning of X to be
restored. There is no limit on the nuaber of redefinitions of a
symbol.

Part I — description of the HAD/I Language

' : ■■ ■ ■■ : ■■■;-• •■ - ■■ ;vv .■- -■,.■■ ■ ■ ■■"■■■.

Section 8: Compile-Tiae Facility 135

Foe example, the following program section:

•SOBSTITOTE« SIZE 16 'BHD SUBSTITUTE»;

•SUBSTITUTE« PI 3.1415927 «END SUBSTITUTE»;

•SUBSTITUTE» ♦ - »EMD SUBSTITUTE»;

•SUBSTITUTE« IF »If» »EBD SUBSTITUTE»;

»SUBSTITUTE» Q 3 ♦ Q •EHD SUBSTITUTE^;

•SUBSTITUTE^ Q 2 ♦ Q »EKD SUBSTITUTE»;

»SUBSTITUTE» A »FIXED ABBAY» (15,SIZE) »END SUBSTITUTE»;

»SUBSTITUTE» TEMP »• »EHD SUBSTITUTE»;

»SUBSTITUTE» := = »EBD SUBSTITUTE»;

»SUBSTITUTE» = TIHP »EMD SUBSTITUTE»;

»POP SUBSTITUTE» TEHP ;

•DECLARE» XYZ A ;

IF niin 6 DOM, EST = EST ♦ 1 ;

BOR1 = Q / PI;

»POP SUBSTITUTE» Q;

BOB2 = Q / PI;

is equivalent to

»DECLARE» XYZ »FIXED ARRAY» (15,16);

»IF» HHH e DOU, EST := EST - 1;

BOR1 := 2 ♦ 3 ♦ Q / 3.1*115927;

BOB?. := 3 ♦ Q / 3.lal5927;

Part I — Description of the HAD/I Language

.

136 Section 8: Coipile-Ti«e Facility

^2—lAS-UHCtyBg * ..f 9£B
..

The • IHCLÜDE1 fo« allows the pcoqraaaer to specify, as a
part of the text of his source pcograa, a place «here sore
source text say be obtained. The text so obtained is inserted
in place of the •IRCLUDE* fors at coapile tine.

Syntax: 'INCLUDE' character-syabol

The character string in the character-syabol (Sec. 2.1.4.1)
specifies the location of the text to be included* The
'INCLUDE* for« itself «ay occur anywhere in the source progras
(except within a sysbol or cosaent) — it is not considered a
statesent. The included text is obtained as a sequence of
characters, and is scanned like any other portion of source
text; it replaces the •INCLUDE* fors which specified it, and
should therefore be syntactically valid in the context of the
•INCLUDE* fors. Included text nay contain further »INCLUDE*
focss.

The character string in the character-syabol is taken as a
data set nase, and is interpreted in a systes-dependent fashion
(see Section 6.3.2).

Example: * INCLUDE* "DEFPACRAGB**

Part I — Description of the HAD/I Language

-

:

I
1
i

Section 9: HAD/I Definitional Facility 137

Section 9: Definitional glfijlltl

This section has not yet been written. Facilities are
planned which will allow the progiaiaec to define new data
types, new operations, new operators, and new statements. Mew
constructs would be defined either in tens of existing
constructs (pre-defined or user-defined) or in tens of an
asseabler-like language.

The feasibility of an effective definitional facility has
already been established by actual ezperiaents with HAD/I. (See
the aeaorandua by Srodawa which is cited in the Preface.) It
reaains to design and iapleaent a clean aechanisa which allows
the user to express his definitions in a reasonable way. Ibis
requires aore research.

One of the authors (Springer) is now writing a doctoral
dissertation which describes an experiaental definitional
facility based on HAD/I.

.

.

Part I — Description of the HAD/I language

138 Section 10: Exaiple HAD/I Programs

^g£tion_10i_£xififil£_JBiP/I_£ifia£äis

-10i1_£i2cedu£fi&_£ALJt§flJT_a^SüB2

This example shows two HAD/I procedures, CALLSQRT and SQBT.
CALLSQRT is the Maainw program and calls upon the procedure
SQPl. There is no main program declaration; CALLSQBT becomes
the main program by being the first program executed by the
operating system. The default mode is 'FLOATING SHOBT* since it
is not otherwise declared. The procedure CALLSQBT reads a
number, then prints the number entered followed by the value
returned by SQBT. The procedure SQBT computes the square root
of its argument using a Newton-Baphson approximation technique.

•PBOCEDURE« CALLSQBT.;
CALLSQRT: • WBITE« (••' 6ENTEE X:1*");

•READ« ("HF*"), X;
•HRITE« (••• X^WF,' SQBT OF X= • , WF*M) rX, SQBT. (X) ;
•GO TO« CALLSQRT
•END«

•PBOCEDUBE' SQBT. (X) ;
•PRESET« EPS := .0001;

SQRT: «IF« X=0. | X=1., •EETÜBN« X;
Y := X;

LOOP: Z := (Y + X/y)/2.;
•IF^ .ABS. (Y-Z) < EPS, •BETÜBN« Z;
Y := Z;
•GO TO^ LOOP
•END^

The following is a sample run of the procedures CALLSQBT
and SQRT. The numbers following "ENTER X:" are input data typed
by the user.

ENTER X: 100.0
X= 100.0000 SQRT OF X= 10.0000
ENTER X: 1.0
X= 1.0000 SQRT OF X= 1.0000
ENTER X: 0.
X= .0000 SQRT OF X= .0000
ENTER X: U.O
X= U.0OO0 SQRT OF X= 2.0000
ENTER X: «:

♦♦*♦ ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION 500788

Part I — Description of the MAD/I Language

Section 10: Example HAD/I Progcaas 139

The two independent procedures CALLSQFT and SQBT can be
coabined into one progran by Baking SQBT internal to CALLSQBT.
SQRT Bust be declared 'ACCESSIBLE* if it is to be referenced in
other prograas. The saaple run of this progtaa is identical to
the previous sample run.

•PROCEDURE' CALLSQBT.;
CALLSQBT: '«BITE« (M,BENIEB X:»*");

•BEAD' ("HF*"), X;
•WBITE« ("• X»«,«?,' SQBT OF X=',«F*") #X, SQBT. (X) ;
•GO TO' CALLSQBT;

•PBOCEDUBE^ SQRT.(X);
•PRESET« EPS := .0001;

SCRT: •IF« X=0. | X=1., •BETÜBN« X;
Y := X;

IOC?: Z := (Y+X/Y)/2.;
•IF« .ABS. (Y-Z) < EPS, 'BETORN« Z;
Y := Z;
•GO TO« LOOP
• EUD«
•END^

Part I — Description of the HAD/I Language

140 Section 10: Exaaple HAD/I Pcograis

ü)A2,.-eC9g§^t£S§..HftSHlE$T,^q4 fllgfl

The procedure HASH naintains a hashed syibol table. It is
called with one argument, the ^HARACTEB* (8) syabol to be
hashed. HASH then conputes a key with a value ranging from 0
through 7 which is the hash of the syrbol naae. The operator
.AS. is used to treat the syabol as two integers in the
computation of the key. Finally, the appropriate thread is
searched for a syabol table entry hawing the argument as its
name. If no such entry is found, a new syabol table entry is
allocated using the 'ALLOCATE* statement and inserted at the
head of the appropriate thread. HASH returns the pointer to the
requested syabol table entry.

The procedure HASHTEST requests a syabol as input, calls
HASH with the syabol as the arguaent, and prints the pointer
returned and the contents of the syabol table entry. HASHTEST
is the main prograa.

•PBOCEDURE' HASHTEST.;
•DECLARE« •DEFAULT» 'INTEGER«;
'DECLARE' HASH 'ENTRY POINT' «POINTER«;
«DECLARE« PTB «POINTER«;
«DECLARE« SYHENT «BASED* «COMPONENT STRUCTURE« (

«POINTER«,
«CHARACTER« (8) ,
«INTEGER«,
«BIT« (8)) ;

'DECLARE' SYMBOL 'CHARACTER* (8) ;
HASHTEST: 'WRITE' ("«&ENTER NEXT SYMBOL:•♦");

'READ'(••C8.8*M) , SYMBOL;
PTR := HASH. (SYMBOL);
SYMENT .ALLOC. PTR;
•WRITE' ("'SYHBOL TABLE ENTRY AT: ',X8.4,' PTRs*,

X8.4,' NAME=',C8.8*M), PTR,
SYMENT (1) ,SYMENT(2) ;

'GO TO« HASHTEST;
•END'

Part I — Description of the HAD/I Language

..

Section 10: Exanple HAD/I Progracs

•PROCEDUBE« HASH. (SYMBOL) ;

141

•DECLARE DEFAULT«
•DECLARE« SYMBOL
•DECLARE» HASH •£
•DECLARE^ SYMEKT

'POINTER^
•CHARACTERS (8)
•INTEGERS
•BIT •(8));

•DECLARE^ THuiADS
•DECLARE^ FINGER
•DECLARE» NAMES •
•PRESET^ THREADS

•INTEGER»;
»CHARACTER» (8) ;
NTRY POINT» »POINTER»;
»BASED» »COMPONENT STRUCTURE»(

NEXT SYMBOL »
SYMBOL NAME »
STORAGE ALLOC »
CLASS MODE »
ARRAY» (0...6) •POINTER»

«
«
«
«

»FIXED
•POINTER»;
FIXED ARRAY»(2)
:= 7(»NÜLL PT»)

»INTEGER»

HASH: (NAMES . AS. (»CHARACTER» (8))) :» SYMBOL;
KEY := .ABS. ((NAMES(1)+NAMES(2)) .REM.7) ;
»WRITE» ("»*♦♦* KEY=»»I*")»KEY;
FINGER :« THREADS (KEY) ;

LOOP: »IF» FINGER = »NULL PT»;
»ALLOCATE» SYMENT;
SYMENT(I) := THREADS (KEY) ;
THREADS(KEY) := .PT. SYMENT;
SYMENT (2) := SYMBOL;
SYMENT(I4) := SYMENT (3)

»ELSE»;
SYMENT .ALLOC. FINGER;
•IF» SYMBOL = SYMENT (2)
FINGER := SYMENT(I) ;
•GO TO» LCOE

•END» ;
FOUND: »RETURN« .PI. SYMENT

•END^

= 0*

•GO TO^ FOUND;

The following is a sample run of
and HASH.

the procedures HASHTEST

Am

ENTER NEXT SYMBOL: a
♦♦ KEY= 1
SYMBOL TABLE ENTRY AT:
ENTER NEXT SYMBOL: b

♦**♦ KEY= 2
SYHBOL TABLE ENTRY AT:
ENTER NEXT SYMBOL: C

♦♦ KEY= 3
SYMBOL TABLE ENTRY AT:
ENTER NEXT SYMBOL: d

♦♦♦♦ KEY= U
SYMBOL TABLE ENTRY AT:
ENTER NEXT SYMBOL: e

00500068 PTR=00000000 NAME=A

00500080 PTE=00000000 NAME=B

00500098 PTR=00000000 NAME=C

005000B0 PTR=00000000 NAME=D

Part I — Description of the MAD/I Language

142 Section 10: Example HAD/I Prograis

i.

:.

♦*♦♦ KEY= b
SYMBOL TABLE ENTRY AT: 00500C68 PTR=00000000 MAHE-E

ENTER NEXT SYMBOL: f
♦♦♦♦ KEY= 6
SYMBOL TABLE ENTRY AT: 00500C80 PTB=00000000 NAME=F

ENTER NEXT SYMBOL: g
♦♦♦♦ KEY= 0
SYMBOL TABLE ENTRY AT: 00500C98 PTR=00Ü00000 NAHE=G

ENTER NEXT SYMBOL: h
**♦♦ KEY= 1
SYMBOL TABLE ENTRY AT: 00500CB0 PTR=00500068 NAHE=H

ENTER NEXT SYMBOL: i !
♦*♦♦ KEY= 2
SYMBOL TABLE ENTRY AT: 00600CC8 PTR=00500080 NAME«I

ENTER NEXT SYMBOL: a
**♦* KEY= 1
SYMBOL TABLE ENTRY AT: 00500068 PTB=00000000 NAHE=A

ENTER NEXT SYMBOL: h
*♦♦♦ KEY= 1
SYMBOL TABLE ENTRY AT: 00500CB0 PTR=00500068 NAHE=H

ENTER NEXT SYMBOL: aardvark
**** KEY= 4 i
SYMBOL TABLE ENTRY AT: 00500CE0 PTR=005000B0 NAHE-AARDVABK

ENTER NEXT SYMBOL: quail
♦♦♦♦ KEY= 0
SYMBOL TABLE ENTRY AX: 00500CF8 PTH=00500C98 NAME=QÜAIL

ENTER NEXT SYMBOL: wunerful
**** KEY= 2
SYMBOL TABLE ENTRY AT: 00500D10 PTR=00500CC8 NABE»HÜNEfiFÜL L

ENTER NEXT SYMBOL: a
***♦ KEY= 1
SYMBOL TABLE ENTRY AT: 00500068 PTR=00000000 NAME=A

ENTER NEXT SYMBOL: t

♦♦♦* ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION 5009E0

c.

rt i -- Description ot the MAD/I Language

T

I.

1

i.

Section 11: The Coapiler in *HAD1 143

PART II ~ OSEB'S GUIDE FOB HAD/I IM BTS

Sectipn-Ul-Ibg Co'»Bilgr-ta,flTS.£üb3rj.gTrtle_*MDl

Contents: The object nodules which mike up the MAD/I
coipiler.

Purpose: To compile HAD/I programs.

Usage: The compiler is invoked by a BUM command,
specifying *HAD1 as the object file.

logical I/O units referenced:

SCABDS - The source program to be compiled.

SPBINT - The compiler listings and
diagnostics.

SPUMCH - The resulting object module. This
can be controlled by the DECK
option.

Examples: $BUN *HAC1
(«SCABDS, SPBIMT, SPUMCH default to *SOUBCE*
♦SINK*, »PUMCH*, respectively)

$BUM »BADI SPUMCH=-F1 PAfi=MOSOUBCE

Description: See Part I of this manual for a description of
the HAC/I Language.

Compiler options can be passed by the optional PAB= field
U on the BUN command. This field must be the last in the seguence

of specifications on the BUN command. The PAB= field consists
of a list of option specifications separated by blanks or
commas. Many of the option keywords have abbreviations. Some
options have pairs of alternative keywords of the forms
"option", "NOoption". In each case, the "option" keyword
requests a service, and the "NOoption" keyword rejects the

^ service. Each option has a default. The default value for some
options depends upon whether the compiler is being run in batch
or from a terminal. In case of conflicting options, the right-

li most option specification has effect. A list of the option
keywords, along with their abbreviations, defaults, and meanings
follows:

Part II — User's Guide for HAD/I in MTS

14U Section 11: The Coipiler in ♦HÄD1

L
KEYWORD AgpREVIATIQN DE^AOLy YALOE F

SOURCE S Batch: SODRCE V
NOSOURCE NS Teninal: NOSÖÜBCE

Requests that a listing of the HAD/I source program be
written to SPRINT.

DECK D DECK
NODECK ND

Requests that the generated object nodule be written
to SPÜNCH.

LIST L NOLIST
NOLIST NL

Requests that a listing of the generated machine
instructions and a storage map be written to SPRINT.

HAP N NOHAP
NONAF NN

Requests that a storage map showing the storage
assignments of all variables and constants be written to
SPRINT.

XREF X NOXHEF
NOXREF NX

Requests that a cross-reference table for all the
identifiers in the program be written to SPRINT.

ATR A Batch: ATR
NOATB NA Terminal: NOATR

Requests that a list of the attributes of each
identifier be written to SPRINT.

OPLIST OL Batch: OPLIST
NOOPLIST NOL Terminal: HOOPLIST

Requests that a listing of the option assignments for
this compilation be written to SPRINT.

Part II -- User's Guide for MAD/I in BTS

■

Section 11: The Compiler in «HAD1 145

SORHGIN= (m#n) SH« S0BK6IN= (1V 256)
=m,n
= (in n)
=■ n

Specifies the left and right margins of the source
program lines to be j and iix respectively, where 1<a<n<256.
All text outside of this range is ignored. For instance,
to read source lines which have sequence-id information in
columns 73 to 80, specify m=1 and n=72.

FREEPORM FF FREEFORH
LINEFORM LF

FREEFORH specifies that the input text is completely
free-form, extending from line to line as a continuous
sequence of characters, with statements separated by
semicolons. LINEFORM specifies that each input line will
have a semicolon automatically appended to it unless the
last character (the one at the right margin) is the
continuation character. The continuation character is

|] specified with CCNTCHAR option.

CONTCHAR=c CC= C0NTCHAR=*

specifies that c is the continuation character to be
used in conjunction with the LINEFORH option.

••

SOÜHCETAB=n ST= S0ÜRCETAB=6

Specifies that the source program, if it is printed,
be printed beginning in column IU The source program
listing itself is controlled by the SOURCE option.

SIZE=(mrn) SI2E=(3,255)
=m,n
= (m n)
=m n

.. Specifies the sizes of two internal translator tables.
H specifies the maximum number of control sections. N
specifies the maximum number of "basetab" entries« These
need not be given except for very large programs.

£
Part II — User's Guide for MAD/I in HTS

1U6 Section 12: Saiple Runs of HAD/I in BTS

segijon 12;-Sfli£le_Sjm£ fti.fiaB^l-in-fllS

12J.i_.^uaU-£afl-gJL£ft»§flBI.aBa SOU

The following excerpt fron a terainal session shows the
tons of the HAD/I cospilet used to generate the saaple output of
Section 10.1. Notice that the conpiler is run twice, once for
each progran. Also notice that the defaults for teminal
operation are such that no listings are produced. In this and
all following examples lower-case characters are typed by the
user. Lines preceded by a *#" are cosnands to BTS. Sone lines
have been truncated on the right to fit within the colunn width
of this report.

callsgrt
1

«list
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
«END
«CUD
«EXECUTION BEGINS

CALLSQRT:

SQBT:

LOOP:

•HBITE'
•GO TO»
•END'

2
3
4
5
6
7
8
9

10
11
12
13
1U
15
16
17
18
19

OF FILE
»madl scards=callsgrt (1,10)

•PROCEDURE« CALLSQET.;
•HHITE^ ("«SENTER X: •*••);
•READ^ (••«?♦••) , X;

(••• x=«,iirr«
CALLSQRT

SQRT OF X= •,»?♦••) ,X#

| X=1,r •RETURN^ X;

• PROCEDURE• SQBT.(X) ;
•PRESET^ EPS :■ .0001;
•IF«
Y : =
Z : =
IIFI

Y : =
•GO

X=0.

(Y*X/Y)/2.;
.ABS. (Y-Z) <
z;

TO« LOOP

EPS, •RETURN^ Z;

•END«

spunch=-load

HAD/I COMPILER VERSION PR240-0939a3.

MAD/I COMPILER STATISTIC PASS1 ALLOC
CPU TINE (SEC) 1.125 1.575
ELAPSED TIME (SEC) 2.U23 2.637
CPU VH INTEGRAL (PG-SEC) 168.693 238.740
MEAN VM SIZE (PGS) 113.569 116.595
DBUM BEADS 29 27
STATEMENTS 5
DESCRIPTORS 35

«EXECUTION TERMINATED
«ran *mad1 scards=callsgrt (11) spunch=-load (last-t-1)

FASS2
2.981
8.093

456.407
121.376

8
3

Part II — User's Guide for HAD/I in NTS

■

..

..

Section 12: Saaple Buns of HAD/I in HTS 147

«EXECUTION BEGINS

MAD/I COHPILBB VEBSION PB240-093943.

NAC/I COHPILBB STATISTIC
CPU TinE (SEC)
ELAPSED TIHE (SEC)
CPU VH INTE6BAL (PG-SEC)
MEAN VH SIZE (PCS)
DBUH BEADS
STATEHENTS
DESCBIPTOBS

»EXECUTION TEBHINATED
Iran -load
«EXECUTION BEGINS

ENTEB X: 100.0
X= 100.0000 SQBT OP X»
ENTEB X: 1.0
X= 1.0000 SQBT OF X*
ENTEB X: 0.
X= .0000 SQBT OF X=
ENTEB X: 4.0
X= 4.0000 SQBT OF X«
ENTEB X: €

PASS1 ALLOC FASS2
.988 1.464 2.854

1.343 1.654 3.496
147.653 222.130 436.374 8
125.010 125.994 127.794 3

1 4
10
65

10.0000

1.0000

.0000

2.0000

♦♦♦♦ ALL INPUT DATA HAS BEEN PBOCESSED - AT LOCATION 500788
«EXECUTION TEBHINATED

Part II — User's Guide for HAD/I in HTS

■

148 Section 12: Sa«pie Buns of HID/I in HTS

13x2—5aiBl^MP 9f BA5JIlSI.anfl.HISH

The following exceipt fro» a terninal session shows the
runs of the HAD/I coapiler used to generate the sasple output of
Section 10.2. The option ©1 chosen on the first run caused all
the coapiler option assignaents to be printed. Likewise, the
source option on both coapilations caused the source listings to
be produced. Mote that on line 14 of RASH the ■MULL PT* has
been replaced by 0. This is necessary due to a ainor bug in the
coapiler which does not allow •MOLL PT1 to work properly in a
•PRESET« stateaent.

#empty -deck
«DONE.
«run ♦aadl scards=hashtest spunch=-deck par«source,ol
EXECUTION BEGINS

Part II — 0ser«s Guide for HAD/I in HTS

:

:

:

..

-

:.

li

I

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

Section 12: Saaple Buns of HAD/I in HTS 149

HAD/I COHPILEE OPTION ASSIGNMENTS:

SOURCE,DECK,NOLIST#SORnGIN=(001,256),PBEEFOBM,CONTCKAR
SOaBCETAB=006,SIZE=(0003,0255),COMPILE
NORAP,NOXBEF,NOATB,OPLIST,0SEB,ADDENDA

MAD/I COMPILER VEBSION PB240-093943.

HAD/I COMPILEB SOOBCE PBOGBAM LISTING

MASHTEST:

•PBOCEDOBE* HASHTEST.;
•DECLABE« »DEFAULT» »INTEGER»;
•DECLABE* HASH •ENTBY POINT* »POINTER»;
»DECLABE» PTB »POINTER»;
•DECLARE» SYHENT »BASED* »COMPONENT STRUCTURE» (

•POINTER»,
»CHARACTER»(8),
»INTEGER»,
•BIT» (8));

•DECLARE* SYMBOL »CHARACTER» (8) ;
•HRITE»("»CENTER NEXT SYMBOL:**");
BEAD("C8.8*"), SYMBOL;
PTB :- HASH. (SYMBOL);
SYHENT .ALLOC. PTB;
•NBITE»("«SYMBOL TABLE ENTBY AT: *rX8.tt,• PTB=^

X8.4,* HAME=*,C8.8*"), PTB,
SYMENT(I) ,SYHENT(2) ;

•GO 10• HASHTEST;
•END*

MAD/I COMPILEB STATISTIC PASSl
CPÖ TIME (SEC) 2.151
ELAPSED TIME (SEC) 3.370
CPU VM INTEGBAL (PG-SEC) 322.617
MEAN VM SIZE (PCS) 88.212
DRUM BEADS 13
STATEMENTS 13
DESCRIPTORS 92

tbXECUTION TEBMINATED
•run ♦■adl scards-hash spunch=-deck (1000)
•EXECUTION BEGINS

ALLOC
2.307
3.364

350.213
88.768
17

par=s

PASS2
3.612
4.930

552.274
89.635
4

12
2

0001
0002
0003
0004

MAD/I COMPILEB VERSION PR240-093943.

MAD/I COMPILEB SOOBCE PBOGBAM LISTING

•PROCEDOBE^ HASH.(SYMBOL);

•DECLABE DEFAULT* »INTEGEB«;
•DECLARE» SYMBOL •CHABACTER» (8);

Part II — üser»s Guide for MAD/I in MTS

.■■-.■ ■ ; .. .
■ ■

150 Section 12: Sample Buna of HiD/I in NTS

..

0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0 0 20
0021
0022
0023
oo:u
0025
0026
0027
0028
0029
0030
0031
0032
0033

•DECLABE«
•DECLABE«

•POINTEB«,
•CHABACTEB«(8),
•INTEGEfi',
•BIT« (8));

•DECLABE« THBEADS

HASH «ENTBY POINT* «POINTEB«;
SYHENT «BASED« «COHPONENT STBOCTUBi' (

« NEXT SYMBOL »
« SYMBOL NAME »
« STOBAGE ATLOC »
« CLASS MODE »

•FIXED ABBAY^(0...6) «POINTEB
•DECLABE^ FINGEB «POINTEB«;
•DECLABE« NAMES «FIXED ABBAY«(2)
•PBESET^ THBEADS := 7(0);

•INTEGEB'

HASH: (NAMES .AS.(•CHABACTEB« (8))) := SYMBOL;
KEY := .ABS. ((NAMES (1)♦NAMES(2)).BEM.7)
•HBITE« ("«♦♦♦♦ KEY^«,I*M) »KEY;
FINGEB := THBEADS(KEY) ;

LOOP: «IF« FINGEB = «NULL PT«;
«ALLOCATE« SYMENT;
SYMENT(I) := THBEADS (KEY) ;
THBEADS(KEY) := .PT. SYMENT;
SYMENT (2) := SYMBOL;
SYMENT (4) := SYMENT(3)

•ELSE«;
SYMENT .ALLOC. FINGEB;
«IF« SYMBOL = SYMENT(2)
FINGEB := SYMENT(I) ;
«GO TO« LOOP

•END«;
FOUND: •BETOBN« .PT. SYMENT

•END^

w t

«GO TO« FOUND;

MAD/I COMPILEB STATISTIC
CPU TIME (SEC)
ELAPSED TIHE (SEC)
CPU V« INTEGBAL (PG-SEC)
MEAN VH SIZE (PGS)
DRUM READS
STATEMENTS
DESCRIPTORS

♦EXECUTION TERMINATED
irun -deck
♦EXECUTION BEGINS

ENTER NEXT SYMBOL: a
♦♦♦♦ KEY= 1
SYMBOL TABLE ENTRY AT:
ENTER NEXT SYMBOL: b

♦*♦♦ KEY= 2
SYMBOL TABLE ENTRY AT:
ENTER NEXT SYMBOL: c

**♦* KEY= 3
SYMBOL TABLE ENTRY AT:
ENTER NEXT SYMBOL: ä

♦*** KEY= 4

PASS1 ALLOC PASS2
2.92C 3.026 7.363
4.663 4.773 11.367

439.160 459.257 1126.523 20
92.347 92.970 94.465 2
29 18 11
26

202 2

00500068 PTB=00000000 NAME=A

00500080 PTB=00000000 NAME=B

00500098 PTfi=00000000 NAME=C

Part II -- User«s Guide for MAD/I in MTS
..

Section 12: Sample Runs of HAD/I in HIS 151

SYMBOL TABLE ENTPY
ENTER HEXT SYMBOL:

♦*♦♦ KEY= 5
SYMBOL TABLE EKTBY
ENTER NEXT SYMBOL:

**** KEY= 6
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

***♦ KEY= 0
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

**** KEY= 1
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

**** KEY= 2
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

**♦♦ KEY= 1
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

*♦♦♦ KEY= 1
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

**** KEY= 4
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

♦*♦* KEY= 0
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

***♦ KEY= 2
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

***♦ KEY= 1
SYMBOL TABLE ENTRY
ENTER NEXT SYMBOL:

AT: 005000B0
e

AT: oosoocee
f

AT: 00500C80
g

AT: 00500C98
h

AT: 00500CB0
i

AT: 00500CC8
a

AT: 00500068
h

AT: 00500CB0
aardvark

AT: 00500CE0
quail

AT: 00600CF8
wunerful

AT: 00500D10
a

AT: 00500068

PTR=CDO0OO00 NAME=D

PTR=00000000 NAME=E

PTH=00000000 NAHE=F

PTR=00000000 NAME=G

PTR=00500068 NAME=H

PTR=00500080 NAME=I

PTR=00000000 NAME=A

PTR=00500068 NAHE=H

PTR-005000B0 NAME=AARDVARK

PTR=00500C98 NAKE=QÜAIL

PTR=00500CC8 NAME=HÜNERFÜL

PTR=00000000 NAHE-A

♦♦ ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION 5009E0
«EXECUTION TERMINATED

Part II — User^s Guide for MAD/I in MTS

152 Section 12: Sample Runs of HAD/I in MTS

12.1.3 Sample Bun of Combined CALLSQftT and SpHT

The following excerpt from a terminal session shows a run
of the NAD/I compiler on the procedures CALLSQ^T and SQ6T as
combined into one program. All compiler output (except for
internal compiler debugging aids) is turned on in this example.
The output is described in some detail below.

The first page consists of the option assignments and
source program listing. Each line of the program is given a
line number which is used as a reference in error messages and
object program listing.

The next page gives the storage allocation of the constants
in the program. Other constants are generated as needed and are
printed interspersed with the object program listing which
follows. The two-byte and six-byte fields at the beginning of
each line are the control section identification and relocatable
address (within the control section) of the beginning of the
data. The third field is the text of the constant. All numbers
are in hexadecimal.

The next five pages are a listing of the generated object
program. The object code is preceded by the line or lines which
caused it to be generated. The first three fields are the
control section identification, relocatable address, and text,
as described above. A M♦l• is printed in lines which set out-of-
line text. There are two types of out-of-line text. First,
instructions which reference addresses not yet generated are
modified (actually, completed) by out-of-line text when the
forward reference is resolved. Second, additional constants and
internal variables are allocated out-of-line as reguired. The
remainder of the line is a pseudo-assembler code representation
of the line. Run-time symbol table entries and the base table
(used for addressability) are generated at the end of the object
program listing.

Next come two pages giving the external symbol dictionary
and relocation dictionary. The notation used in these tables is
similar to that used in other System/360 translators.

The next page of output gives a storage map showing the
allocation of all variables and constants in the program. The
first field gives the control section identification of the
allocation. If the item has no allocation in this program, ••OO"
is given as the control section identification. The next field
gives the storage class of the item. The correspondence is as
follows:

01 Static
02 External

Part II — User's Guide for MAD/I in MTS

::

.

Section 12: Sample Buns of HAD/I in NTS 153

03 Formal Parameter
07 Based

The next field gives the displacement within the base table of
the base address constant to be used in referencing this item.
Notice that formal parameters, external symbols, and based
variables always have a unigue base table entry, while many
static items may be referenced using the same base table entry.
The last field gives the relocatable address of the item within
the control section.

The last page gives the attributes of each symbol in the
program and it: self-explanatory. The numeric fields are
identical to those given in the storage map.

♦empty -deck
«DOME.
#run ♦madl scards=callsgrt2 spunch=-deck par=s,a,l,m,ol
«EXECUTION BEGINS

I

Part II — User's Guide for KAD/I in MTS

■ ■ ■ . ■■■'x*m.*t*i™ -.ra-- -■.-.■::i!.; »tmm ■■ ■ ■ i

154 Section 12: Sample Runs of HAD/I in HTS

NAD/I COMPILEE OPTION ASSIGNMENTS:

SOÜBCErDECK,LISTirSOHMGIN= (001,256) , FBEEFORM,CONTCHAB= +
SOÜRCETAB=006,SIZE= (0003,0255),COMPILE
MAP,NOXBEF,ATR,OPLIST,USER,ADDENDA

MAD/I COMPILES VERSION PR2U0-0939a3.

HAD/I COMPILER SOUBCE PBOGBAM LISTING

0001 'PBOCEDÜBE' CALLSQRT.;
0002 CALLSQBT: •HRIIE«("'6ENTEB X:'*");
0003 'HEAE' ("HF*M), X;
OOOa «WBITE« ("• X=•,HF», SQBT OF X^ ,MF*") ,X,SQBT. (
0 005 «GO TO« CALLSQBT;
0006
0007 'PROCEDURE« SQRT.(X);
0008 «PRESET« EPS := .0001; L
0009 SQRT: «IF« X=0. | X=1., «RETURN« X;
0010 Y := X;
0011 LOOP: Z := (Y*X/Y)/2.;
0012 «IF« .ABS. (Y-Z) < EPS, «RETURN« Z;
0013 Y := Z;
OOIU «GO TC« LOOP
0015 «END«
0016 «END«

i
L

Part II — üser«s Guide for MAD/I in MTS L

Section 12: Sample Runs of HAD/I in HTS 155

STORAGE ALLOCATION

01 000000
01 000064 41200000
01 000068 41100000
01 00006C 00000000
01 000070 7D40E77E7D6BE6C66B7D
01 00008R E6C65C

tCALLSQR CSECT
♦ CONST 2.
+ CONST 1B
+ CONST 0.
+ CONST ••• X*«,«?»' SQ
♦ CONST "HF*"

01 00008D 7D50C5D5E3C5D940E77A ♦ CONST H,6ENIEE X:«*"

-.

Part II — User's Guide for HAD/I in HTS

 :rrrr'

156 Section 12: Saiple Runs of HAD/I in NTS

HAD/I COMPILEB OBJECT PHOGBAM LISTING

02 000000
♦ 0001
♦0002 CA
02 000000
02 000000
02 000000
02 00000U
02 000008
02 00000C
02 000010
02 00001U
02 000018
02 00001A
02 000020
02 000024
02 000028
02 00002A
02 00002E
02 000032
02 000036
02 00003A
02 00003E
02 000040
02 000044
02 000048
01 00005C
01 000060
01 000058
02 00004C
02 000050
02 000054
02 000Ü58
02 00005C
02 000060
02 000064
02 C00066
02 00006A
02 00006E
02 000070
02 000074
02 000078
02 00007C
02 000080
02 000084
02 000086
02 00008A

♦ 0003
02 00008E
02 000090
02 000094

LLSQBT:

aCALLSQB
•PBOCEDORE* CALLSQBT.;
•WBITE« ("'SENTEB X:1*");

CSECT

90ECD00C
58C0F020
58E0C00C
58E0E004
50E0D008
50DOE004
18DE
47F0F028
00000000
58C0F020
1B11
5840C00C
41E0D048
98234000
90DE4000
58F0C014
ODEF
90234000
58BOCO0O
50F0B09C
0000008D
00300C00
00000001
4110B05C
5840C00C
41E0D048
98 234000
90DE4000
58F0C018
ODEF
90234000
50F0B09C
1B11
5840CO0C
41E0D048
98234000
90DE4000
58F0C01C
ODEF
90234000
50F0B09C

•BEAD'
1B11
5840C00C
41E0D048

CALLSQBT

("WF+")t x;

CHOP
EQU
STA
L
L
I.
ST
ST
LB
B
DC
L
SB
L
LA
LM
STR
L
BASE
STB
L
ST
DC
CONST
CONST
LA
L
LA
LH
STH
L
BASE
STH
ST
SB
L
LA
LH
STH
L
BASE
STH
ST

SB
L
LA

0,4

1 14,12,12(13)
12,32 (,15)
14,XSTKADB
14,4(,14)
ia,8(,13)
13,4(,14)
13,14
40(,15)
A(XBASETAB)
12,32 (,15)
1,1
4,»STKADB
14,72(,13)
2,3,0(4)
13,14,0(4)
15,#+20
14,15
2,3,0(4)
11r0(,12)
15,XBTNCODE
A("'6ENTEB X: <
3148800
1
1,#CALLSQB+92
4,XSTKADB
14,72 (,13)
2,3,0(4)
13,14,0(4)
15,#+24
14,15
2,3,0(4)
15,XBTNCODE
1,1
4,XSTKADB
14,72 (,13)
2,3,0(4)
13,14,0(4)
15,#+28
14,15
2,3,0(4)
15,XBTNCODE

1,1
4,XSTKADB
14,72 (,13)

.

.

Part 11 — User's Guide for HAD/I in HTS

Section 12: Sample Runs of HAD/I in HTS 157

02 000098 98234000
02 00009C 900E4000
02 0000A0 58F0C020
02 0000AU ODEF
02 0000A6 90234000
02 0000AA 50F0B09C
01 000050 0000008A
01 00005U 00300300
01 OOOOUC 00000001
02 0000AE 4110B050
02 0000B2 58 40 COO C
02 0000B6 41E0D048
02 0000BA 98234000
02 0000BE 90DE4000
02 0000C2 58F0C018
02 0000C6 ODEF
02 0000C8 90234000
02 OOOOCC 50F0B09C
01 000 044 OOOOOOOC
01 000048 00720400
01 000040 00000001
02 0000D0 4110B044
02 0000D4 5840C00C
02 0000D8 41E0D048
02 0000DC 98234000
02 OOOOEO 90DE4000
02 0000E4 68F0C024
02 0000E8 ODEF
02 OOOOEA 90234000
02 OOOOEE 50F0B09C
02 0000F2 1B11
02 0000F4 5840C00C
02 0000F8 41E0D048
02 OOOOFC 98 23400 0
02 000100 90DE4000
02 000104 58F0C01C
02 000108 ODEF
02 00010A 90234000
02 00010E 50F0B09C

»0004 •WHITE»
02 000112 1B11
02 000114 5840C00C
02 000118 41E0D048
02 00011C 98234000
02 000120 90DE4000
02 000124 58F0C01I*
02 000128 ODEF
02 00012A 90234000
02 00012E 50F0B09C
01 000038 00000070
01 000Ü3C 00301A00
01 000034 00000001

+

+

(•'• X^MF,«

LH
STd
I
BASS
STH
ST
DC
CONST
CONST
LA
L
LA
LH
STH
L
BASH
STH
ST
DC
CONST
CONST
LA
L
LA
LH
STH
L
BASB
STH
ST
SB
L
LA
LH
STH
L
BASB
STH
ST

SORT OF
SR
L
LA
LH
STH
L
BASR
STH
ST
DC
CONST
CONST

2,3,0(4)
13f14#0(4J
15f#+32
14r15
2,3,0(4)
15,%RTNCOC£
AC'HF*")
3146496
1
1,#CALLSQR+80
4,XSTKADR
14,72(,13)
2,3,0(4)
13,14,0(4)
15,#+24
14,15
2,3,0(4)
15,XBTNCODE
A(X)
7472128
1
1,#CAlLSQB+68
4,XSTKADR
14,72 (,13)
2,3,0(4)
13,14,0(4)
15,#+36
14,15
2,3,0(4)
15,XRTNCODE
1,1
4,XSTKADR
14,72 (,13)
2,3,0(4)
13,14,0(4)
15,#+28
14,15
2,3,0(4)
15,XETNCODE

Xs«,HF*M),X,SQB
1,1
4,XSTKADE
14,72 (,13)
2,3,0(4)
13,14,0(4)
15,#+20
14,15
2,3,0(4)
15,XRTNCODE
AC'1 X=,,WF,«
3152384
1

Part II — user's Guide for HAD/I in HTS

■ ■

1S8 Section 12: Saaple Buns of HAD/I in HTS

I
02 000132 4110B038
02 000136 5840C00C
02 00013A 41E0D048
02 00013E 98234000
02 0001'»2 90DE4000
02 000146 58F0C018
02 0001UA ODEF
02 000 1UC 90234000
02 000150 50F0BO9C
01 00002C OOOOOOOC
01 000030 00 720400
01 000028 00000001
02 000154 4110B02C
02 000158 5840C00C
02 000 15C 41E0D048
02 000160 98234000
02 000164 90DE4000
02 000168 58F0C024
02 00016C ODEF
02 00016E 90234000
02 000172 50F0B09C
01 000020 OOOOOOOC
01 000024 00720400
01 00001C 00000001
02 000176 4110B020
02 00017A 5840C00C
02 00017E 41E0D048
02 000182 98234000
02 000186 90DE4000
02 00018A 58A0C0O0
02 00018E 41P0A000
02 000192 ODEF
02 000194 90234000
02 000198 50FOB09C
02 00019C 700CB0A0
01 000014 000000A0
01 000018 00720400
01 000010 00000001
02 OOOIAO 4110B014
02 0001A4 5840C00C
02 0001A8 41E0D048
02 0001ÄC 98234000
02 0001B0 90DE4000
02 0001B4 58F0C024
02 0001B8 ODEF
02 0001BA 90234000
02 0001BE 50F0B09C
02 0001C2 1B11
02 000 1C4 5840C00C
02 0001C8 41E0D0a8
02 0001CC 98234000
02 0001D0 90DE4000

•f
♦

+

LA 1r#CALLSQ£i+56
L 4,%STKADB
LA 14#72(,13)
LH 2,3,0(4)
STH 13,14,0(4)
L 15,#+24
BASB 14,15
STH 2,3,0(4)
ST 15,XBTKCO0E
DC A(X)
CONST 7472128
CONST 1
LA 1,#CALLSQB*44
L 4,%STKADB
LA 14,72(,13)
LH 2,3,0(4)
STH 13,14,0(4)
L 15,«*36
BASB 14,15
STH 2,3,0(4)
ST 15,XBTNCOD£
DC A(X)
CONST 7472128
CONST 1
LA l,#CALLSQB+32
L 4,%STKADB
LA 14,72(,13)
LH 2,3,0(4)
STH 13,14,0(4)
L 10,0(,12)
LA 15,SQBT
BASB 14,15
STH 2,3,0(4)
ST 15,%BTNCODE
STE 0,XTHP0001
DC A(XTHPOOOl)
CONST 7472128
CONST 1
LA 1,#CALLSQB+20
L 4,XSTKADB
LA 14,72(,13)
LH 2,3,0(4)
STH 13,14,0(4)
L 15,««36
BASB 14,15
STH 2,3,0(4)
ST 15,XBTNCODE
SB 1,1
L 4,XSTKADB
LA 14,72(,13)
LH 2,3,0(4)
STH 13,14,0(4)

I

t.

.

Part II — User's Guide for HAD/I in HTS

:.

L

Section 12: Sa«pie Runs of HAD/I in UTS 159

■

..

:

..

02 0001D4 58F0C01C L 15##*28
02 0001D8 ODEF BASB 14,15
02 0001DA 90234000 STH 2,3,0(4)
02 0001DE 50F0BO9C ST 15,*RTliCODE

♦ 0005 •GO TO» CALLSQRT;
02 0001E2 1B11 SR 1,1
02 000028 0 EQO CALLSQBT*40
02 OOCIEU 5890C008 L 9,8(,12)
02 0001E8 47F09028 B)CALLSQR+40

♦0006
*0007 •PROCEDORE« SQRT. (X);
♦ 0008 •PRESET • EPS :» . 0001;

01 000000 3A2AF31D ♦ CONST .0001
♦0009 SQRT: «IF« X= 0. | X=1., •RETOBN* X;

02 0001EC CROP 0,4
02 0001EC SQRT EQU ♦
02 00018C C008 ♦
02 000190 Al EC ♦
02 0001EC 90ECD00C STH 14,12,12(13)
02 0001F0 58C0F020 L 12,32(,15)
02 0001FU 58E0C00C L 14,XSTKA0B
02 0001F8 58E0E004 L 14,4(,14)
02 0001FC 50E0D008 ST 1«»,8(,13)
02 000200 50D0E004 ST 13,4(,14)
02 000204 18DE LR 13,14
02 000206 47F0F028 B 40(,15)
02 00020C 00000000 DC A(XBASETAE)
02 000210 S8C0F020 L 12,32 (,15)
02 000214 58 201000 L 2,0(,1)
02 000218 5020C010 ST 2,*+16
02 00021C 58B0C010 L 11,16(,12)
02 000220 782OB00O LE 2,X
02 000224 58A0C000 L 10,0(,12)
02 000228 7920A06C CE 2,»0.
02 00022C 92FFA0A4 HVI XTHP0001,MFFMX
02 000230 5890C000 L 9,0(,12)
02 000234 47809000 BE XFLA0002
02 000238 9200A0A4 HVI XTHP0001,0
02 00023C XFLA0002 EQU *

02 000232 C008 ♦
02 000236 92 3C ♦
02 00023C 7920A068 CE 2,-1.
02 000240 92FFA0A6 HVI %THP0002,"FF"X
02 000244 5880C000 L 8,0(,12)
02 000248 47808000 BE XFLA0003
02 00024C 9200A0A6 HVI XTHPO002,0
02 000250 XFLA0003 EQO *

02 000246 C008 ♦
02 00024A 6250 ♦
02 000250 D200A0A5A0A4 HVC XTHP0003(1),XT
02 000256 D600A0A5A0A6 DC XTHP0003(1) ,XT
02 00025C 9500A0A5 CLI XTHPO003,0

Part II — Oser^s Guide for HAD/I in HTS

(■»«.«»

160 Section 12: Saaple Bons of HAD/I in HTS

02 000260 5870C000 L 7f0(,12)
02 00026U 47807000 BE XFLD0005
02 000268 3802 LEB 0.2
02 00026A 58D0D004 L 13.U(f13)
02 000 26 F. 98ECD00C LH 14,12.12(13)
02 000272 1BPF SB 15,15
02 00027U 07FE BB 14
02 000276 XPLDOOOS EQD •
02 000262 CO 08 ♦
02 000266 7276 ♦

♦ 0010 Y := X;
02 000276 saBOcooo L 11»0(,12)
02 00027A 58A0C010 L 10,16 (,12)
02 00027E D2O3B004AO0O HVC m.x

♦ 0011 LOOP: Z := (Y*X/Y)/2.;
02 00028U LOOP EQÜ ♦
02 000284 58B0C010 L 11.16 (,12)
02 0.0288 7820B000 LE 2,1
02 000280 58A0C000 L I0,0(,12)
02 000290 7D20A004 DE 2,1
02 00029U 7A20A004 kl 2,Y
02 000298 7D20A064 DE 2,«2.
02 00029C 7020A008 SIE 2,Z

♦ 0012 •IF' .ABS. (Y-Z) < EPS, •BETOBM' Z;
02 0002A0 7820A004 LE 2,1
02 0002A4 7B20A008 SE 2,1
02 0002A8 3022 LPEB 2,2
02 0002ÄA 79 20A000 CE 2, EPS
02 0002AE 5890C000 L 9,0(,12)
02 0002B2 47B09000 BML XFLD0007
02 0002B6 7800A008 LE 0,Z
02 0002BA 58D0D004 L 13,4(,13)
02 0002BE 98ECD00C LH 14,12,12(13)
02 0002C2 1BFF SB 15,15
02 0002CU 07FE BB 14
02 0002C6 XFLD0007 EQÜ *
02 0002B0 C008 ♦
02 000284 92C6 ♦

♦ 0013 Y := Z;
02 0002C6 58B0CO0O L 11.0(,12)
02 0002CA D203B004B008 HVC m.z

♦ 0014 •GO TO« LOOP
♦ 0015 •END«

02 0002D0 58A0C008 L 10.8(,12)
02 0002D4 47F0A284 B LOOP

♦ 0016 •END»
♦ 0016 aiCODEENDOFFILE

FTST ENTRIES FOB BLOCK %BLN0001

RTST ENTRIES FOR BLOCK XBLN0002

Part II — User's Guide for HAD/I in HTS

..

Section 12: Saaple Runs of HAD/I in HTS 161

01 0OOOA8
02 00020C
02 000020
01 0000A8
01 0000AC
01 0000B0
01 0000B4
01 0000B8
01 0000BC
01 0000C0
01 0000C4
01 0000C8
01 OOOOCC

XBASETAB EQÜ »BASETAB
000000A8
000000A8
00000000
OOOOO0A8
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

♦

♦

.,

.

.

Part II — user's Guide for HAD/I in HTS

■ . .

162 Section 12: Sample Huns of HiD/I in UTS

(SYMBOL,TYPE#IDvADDSrLEN6TH/LDID) EXTERNAL SYMBOL DICTIONARY (

#CALLSQR PD 01 000000 OO00D0
aCALLSQR SD 02 000000 0002D8
HADSTACK ER 03
CALLSQRT LD 000000 000002
MADHRITE ER 04
FORMAT ER 05
ENDIOP ER 06
MACREAD ER 07
IOP ER 08

y

.

Part II — User's Guide for BAD/I in MTS

■

Section 12: Sample Buns of HAD/I in HTS 163

RELOCATION DICTIONARY (P.IDrR.ID,FLAGS,ADDRESS)

01 01 oc 00005C
01 01 oc 000050
01 01 OC 000044
01 01 OC 000038
01 01 OC 00002C
01 01 OC 000020
01 01 oc 00 0014
02 01 oc 00020C
02 01 oc 000020
01 01 oc 0000A8
01 01 oc OOOOAC
01 02 oc GOOOPO
01 03 oc 0000B4
01 04 oc OOOOBC
01 05 oc OOOOCO
01 06 oc 0OO0C4
01 07 oc 0000C8
01 08 oc OOOOCC
02 000000 END CALLSQBT

Part II — User's Guide for HAD/I in BTS

.

164 Section 12: Sample Buns of HAD/I in NTS

STORAGE NAP

00 02 OOlt» 000004 MADHBITE
00 02 0018 000005 FOBBAT
00 02 001C 000006 ENDIOP
00 02 0020 000007 MADREAD
00 02 002U 000008 IOP
oo 03 ooio oooooa x 1

01 01 0000 000000 EPS
01 01 0000 00000U ¥
01 01 0000 000008 z
01 01 0000 OOOOOC X
01 01 0000 00006U 2.
01 01 0000 000068 1.
01 01 0000 00006C 0.
01 01 0000 000070 •" X^,«?,' SQBT OF X*« rHF*"
01 01 0000 00008A "WF*"
01 01 0000 00008D "'SENTEB X:'*"
01 01 0000 00009C XRINCODE
01 01 0000 0000A8 %EASETAB
02 01 0008 000000 CÄL1SQHT
02 01 0008 0001EC SQRT
02 01 0008 000284 LOOP

Part II — user's Guide for MAD/I in HTS
.

I
I
I
1
I

Section 12: Sample Buns of MAD/I in MTS 165

SYMBOL ATTRIBUTES

BLOCK tBLNOOOl NOMBFa OF SYMBOLS=19

•DEFAULT« »FLOATINGSHOBT» 00 00 0000 000000
ÄBTNCODE «INTEGEBLONG» 01 01 0000 00009C
CALLSQBT 'ENTRYPOINT' 02 01 0008 000000 'ACCESSIBLE'

BESULT= •FLOATINGSHOBT»
ENDIOP »ENTBYPOINT« 00 02 001C 000006 «EXTEBMAL»
EPS »FLOATINGSHOBT« 01 01 0000 000000
FOBMAT «ENTEYPOINT« 00 02 0018 000005 »EXTEBNAL»
IOP »ENTBYPCINT« 00 02 0024 000008 »EXTEBNAL»
MADBEAD »ENTBYPOINT» 00 02 0020 000007 »EXTEBNAL»
MADMBITE »ENTEYPOINT» 00 02 0014 000004 »EXTERNAL»
SQBT »ENTEYPOINT» 02 01 0008 0001EC

BESÜLT= »FLOATINGSHOBT»
»FLOATINGSHORT» 01 01 0000
»FLOATINGSHOBT» 01 01 0000
»FLOATINGSHORT» 01 01 0000
X=»,WF,» SQRT OF X^HF*"
LENGTH=26

•••SENTEE X:1*" »CHARACTER» 01
LENGTH=12

•IWF*II iCHARACTER« 01 01 0000 00008A
LENGTH=3

0. •FLOATINGSHORT' 01 01 0000 00006C
1. •FLOATINGSHORT^ 01 01 0000 000068
2. •FLOATINGSHORT^ 01 01 0000 000064

X
Y
Z
ii •

oooooc
000004
000008
•CHARACTER» 01 01 0000 000070

01 0000 00008D

BLOCK XBLN0002 NUMBER OF SYMBOLS=2

LOOP •TBANSFEEPOINT^ 02 01 0008 000284
X »FLOATINGSHOBT« 00 03 0010 000000 (FOBMAL PAB)

MÄD/I COMPILEB STATISTIC PA SSI ALLOC PASS2
CPU TIME (SEC) 2.115 2.649 10.213
ELAPSED TIME (SEC) 6.067 6.946 29.114
CPU VM INTEGBAL (PG-SEC) 316.617 402.356 1565.634 22
MEAN VM SIZE (PGS) 79.199 79.600 81.137 2
DBÜM BEADS 57 77 245 3
STATEMENTS 15
DESCRIPTORS 100 1

»EXECUTION TERMINATED
#run -deck map

• 9 • • ••• • • •

ENTRY = 5001A8 SIZE = 00802D

NAME VALUE T RF NAME VALUE T RF NAME VALUE

Part II — User«s Guide for MAD/I in MTS

166 Section 12: Sample Buns of HAD/I in NTS

li
i

GETSPACE 20DD9E * FREESPAC 20E09E * LOAD 20F7B0
SYSTEM 2157CC ♦ ERROB 2157F6 * PGNTTP.P 2181CC
GETFD 218878 ♦ SCABDS 218B34 * SPBIHT 218B46
SPÜNCH 218B58 ♦ SEBCOM 218B6A ♦ BEAD 2186E8
WRITE 218C0U ♦ LCSYMBOL 2197D0 * «CALLSQB 5000D8
SCALLSQR 5001A8 5001A8 SPIE 500480 *500480 MADIO 5005P0
HADBEAD 5005F0 * HADUBITE 50061E * FOBHAT 50073A
IOP 50077C * ENDIOP 5007C2 ♦ MDIOPSCT 500958
HADSTACK 503000 ♦503000 IOH360 504000 ♦504000 IOHIN 5O4OF0
IOHOÜT 504114 ♦ IOHETC 50483C ♦ ONESATIM 50492C
IOHERP 508000 *503F18 GLAP 50A000 ♦506988 IOPKG 506000
HOP EN 50B0CE * BCLOSE 50B148 ♦ POPEN 50B174
PCIOSE 50B1C0 *

• • • • * m m m mm»

tEXiCUTIO* 1 BEGINS

• • • • • •

ENTER X: 100.C)
X= IOC 1.0000 SQRT OF X= 10. 0000
ENTER X: 1.0
X= 1 .0000 SQRT OF X= 1. 0000
ENTER X: 0.
X = .0000 SQRT OF X= 0000
ENTER X: 2.0
x= : >.0000 SQRT OF X= 1. 4142
ENTER X: 4.0
X= H t.0000 SQRT OF X= 2. 0000
ENTER X: t

0**** ALI . INPUT DAT/ 1 HAS BEEN PBOCESSF.D - AT LOCATION 500768
#EXECUTIOb I TERMINATED

Part II -- User's Guide for MAD/I in MTS

Section 13: MAD/I Error Messages 167

Section 13; -JIAD^I. Er £or. Jl e s sa^es

This section has not yet been written — sorry.

Part II — User's Guide for HAD/I in MTS

168 Section 14: Object Nodule Description

Section lU; Object. Bogulg, DesgriBti.QP

.1JUJ RgBregentatjon. p f D§ta

Alignment .Attribute

The alignment attribute of an item specifies a constraint
on the positioning of its allocated storage. The alignment
attribute for an item is taken as the maxj-BU» of the value
explicitly declared through the 'ALIGN» keyword"(if any) and the
alignment implied by other attributes of the item. The valid
alignment values and their definitions are:

1: Any byte boundary.
2: Any halfword boundary.
4: Any fullword boundary.
8: Any double-word boundary.

Mode Repgesentations

The following table gives the internal representations used
for the various HAD/I modes. Representation terminology is
defined in the IBM System/360 Principles of Operation manual.
The "length" given is the length in bytes.

Mode A] l^n lent le

•INTEGER SHORT« 2 2

•INTEGER LONG' 4 a

•FLOATING SHORT' H 4

•FLOATING LONG« 8 8

•PACKED^ (n) 1 n

•BIT' (n) - -

•B001EAN' 1 1

•CHARACTER' (n)

Halfword fixed-point number.

Fullword fixed-point number.

Short floating-point number.

Long floating-point number.

Packed-decimal number.

n bits, allocated such that
all bits are contained in one
fullword.

A logical byte; all bits 1
represents «TRUE« and all
bits 0 represents 'FALSE1.

Variable-length logical
information: i.e., n bytes

Part II — user's Guide for HAD/I in MTS

Section 14: Object Module Description 169

representing n characters
EBCDIC.

in

•VARYING CHARACTER* (n)

•FILE NAME*

•TRANSPEB POINT'

•FIXED ARRAY' (—)

•VARYING ARRAY« (—)

•COHPONENT STRUCTURE« (—)

•ALTERNATE^ (—)

•POINTER«

•ENTRY POINTS

•ENTRY NAME'

n+2 The halfvord fixed-point
number representing the
current length of the
character string, followed by
the characters, one per byte.

4 Fullword address of a control
block in the MAD/I
input/output support tables.

0 The first instruction at the
transfer point.

The component values, laid
out by the array sequencing
rule. The alignment and
length are determined as in
Section 3.1.2.1. There may
also be an array dope vector,
as described belov.

See •FIXED ARRAYS above.

The component values, laid
out in the order declared.
The alignment and length are
determined as in Section
3.1.2.2. There may also be a
dope vector, as described
below.

The alternative values,
overlaid one "atop" the
other. The alignment and
length are determined as in
Section 3.1.2.3.

4 Fullword address of the item
pointed to.

0 The first instruction at the
entry point.

8 Fullword address of the entry
point followed by the
fullword address of the
appropriate environment
information.

Part II — üser«s Guide for MAD/I in MTS

■mvsmmm.

170 Section 14: Object Module Description

Al£äI_P22e_Vectors

An array dope vector is used to coipute the displacenent of
a conponent within an array. The dope vector for an n-dinension
array consists of the 3*n+1 itens: n, L(1) , 0(1), H(1)» ••«*
L(n), 0(n), H(n)r vhere each itei is a fullvord fixed-point
nunber. n is the nuaber of dimensions of the array» L(i) is the
lover bound of the i-th subscript, 0(i) is the upper bound of
the i-th subscript, and H(i) is a nultiplier used to coipute the
displacenent of a component. The displacement of the component
having subscripts (S(1), ..., S(n)) is computed as follows:

£
displacement = > [S (i) - L (i)] ♦ M (i)

1

The upper bounds, U(i), are not used in this computation, but
can be used to check subscript ranges.

For example, the declaration

•DECLARE« A »FIXED ARRAY« (0...10, 5...20, U00) «INTEGER«

produces the array dope vector (3, 0,10,25600, 5,20,1600,
1,400,4) .

Component gtructure poEe^Vegtpr

The dope vector for a component structure having 3
components consists of the n + 1 items: n, D(1), ..., D(n). £ is
the number of components, D (i) is the displacement of the i-th
component from the beginning of the component structure. Each
item is a fullword fixed-point number.

For example, the declaration

•DECLARE« A «COMPONENT STRUCTURE« («INTEGER SHORT«,
•FLOATING LONG^, »BIT«(8))

produces the dope vector (3, 0, 8, 16).

Run-time Symbol Table

The format of the run-time symbol table is still in a state
of flux, and is not defined here.

Part II — User«s Guide for HAD/I in HTS

I
I
I

SSClion.

Section 15: Assembler Coding Feature

>gäblgr_Codinfl_fe»tyce

171

The asseabler coding feature provides a ainiaal language
facility for coding aachine operations that cannot be expressed
directly in HAD/I. Syntactically, the asseabler coding feature
consists of a coapound statement in the NAD/I language. The
scope of this stateaent consists of two parts: declarations and
asseabler-language stateaents. The aachine code generated by
the stateaent consists of the aachine code specified by the
asseabler code in the stateaent scope, interspersed vith
cotapiler-gcnerated aachine code necessary to load base
registers.

U
15.1 'EHTEB ASSEHBL^B CODE* Statement

The asseabler coding feature stateaent
stateaent which has a prefix of the fora

•ENTER ASSEHBLEB CODE* ;

is a coapound

Note that only the long fora of the coapound stateaent is legal.
The scope of the *ENTEB ASSEHBLEB CODE* stateaent (abbreviated
•ENTASH*) does not consist of HAD/I stateaents, but rather
declarations peculiar to the *EHTEB ASSEHBLEB CODE* stateaent
followed by asseabler code instructions. The individual
declarations and asseabler code instructions are separated by
seaicolons. The stateaent is terainated by the keyword •END*.

.; There are three declarations which can be specified in the
s;ope of an »ENTER ASSEHBLEB CODE* stateaent. These are
*COVEB*v «LABEL*, and «RESERVE*. Each declaration consists of
one of the above three keywords followed by a list of
identifiers and possibly constant syabols, separated by coaaas.

li
The •COVER* declaration is used to guarantee that certain

identifiers or constant syabols (not 9-expressions) in the HAD/I
prograa have base register coverage throughout the scope of the
* ENTER ASSEHBLEB CODE* stateaent. *COVER* should be used only
for those identifiers and constant syabols for which coapiler-
generated load instructions preceding the asseabler code
instruction cannot be tolerated, because *COVEB* reserves
registers for base coverage for each itea in its list. One case
in which *COVEB* should be used is for the identifiers and
constant syabols referenced by the subject instruction of an
EXECOTE instruction, since the insertion of load instructions

Part II — Oser*s Guide for HAD/I in HTS

'"- ' (

172 Section 15: Asseabler Coding Feature

i

preceding the subject instruction (to acguire addressability)
would cause a load instruction, rather than the anticipated
instruction, to be executed. The following exaaple causes up to
four general registers to be reserved for use as base registers,
one each for the two MAD/I identifiers QQSV and X, and one each
for the two constant syabols 15.3E-5 and 1:

•COVER» QQSV,X, 15.3E-5f1;

l^ls-ls.! 'LABEV

The •LABEL* declaration is used to declare that certain
identifiers will appear as labels within the scop« of the *EHTEB
ASSEMBLER CODE* statement. The labels are defined by the
occurrence of a colon (:) tflllHtMfl bY ^be label in what nor sally
would be called the label field of sose assembler code
instruction. For example:

• LABIL• QQSV;

:QQSV L R3,X;

The scope of a •LABEL1 identifier is restricted to the •EN1EB
ASSEHBLER CODE^ statement, and is independent of other
occurrences of the same symbol outside the statement.

JS.jJiJ.sJ LRESEEyil

The 'RESERVE' declaration is used to reserve general
registers for the use of the assembler language instructions
within the scope of the 'ENTER ASSEHBLER CODE^ statement. Each
list item can either be an integer constant symbol, in which
case a specific general register is reserved, or an identifier,
in which case any available general register is reserved.
Identifiers representing registers are known only inside the
scope of the 'ENTER ASSEMBLER CODE* statement which defines
them, and are independent of the same symbols used outside of
that statement. It is best to mention specific registers first
and have the •RESERVE' declaration precede any «CCVER'
declarations to insure that the register wanted has not already
been assigned to an identifier or as a base register. All
general registers other than registers 12 and 13 are available.
The compiler will feel free to use any registers which have not
been reserved. For example, the declaration

•PESERVE« 1,2,3,HI;

reserves general registers 1,2, and 3, plus one other
general register whose designation will be R1.

Part II -- user's Guide for MAD/I in NTS

arbitrary

-.

..

..

I

Section 15: Assembler Coding Feature 173

J5i.Jx2 Asseabler..goge Fgraat

Asseabler code instructions are written in much the sane
■anner as in the assembler language, except that they are free-
form and must be separated by semicolons. All the machine-
instruction operation codes are valid, including the privileged
operations, operations unigue to the Model 67, and RFQ-ed
instructions on the University of Michigan machine such as mixed
floating-point. Swap Register, and the Search List instruction.
None of the assembler instructions (such as EQU, OSG, DC, or
USING) are valid.

The structure of the operands in the assembler language
code is the same as in the assembler language (e.g., R,D(X,B)).
However, the expressions which can be used as operands are much
more restricted.

There are two kinds of ••values" in the assembler code
operand expressions: absoj-a^e and relocatable. Relocatable
values are stog^g^ as§igBBgD$§r They ace converted into base-
displacement pairs when used as operands in assembler code
instructions. Absolute values, on the other hand, are
equivalent to seif-defining terms in the assembler language.
They are used for register numbers, displacements, and immediate
data.

The following can be used as expression operands:

1. Unsigned-integer constant symbols, which have the usual
integer absolute ••value". For example, 10, 4, 0, and so
forth.

2. Identifiers which have been * RESERVE*ed, which have as
their value the general register corresponding to them,
which is an abspjlute "value". For example, R1 following
the declaration 'RESERVE* Rl;

3. Constant symbols (not ^-expressions) preceded by an
equal sign (=), which have as their value the relocatable
storage assignment of the corresponding constant in the
program. For example, =1, =10.5, ="FFF00000"X, and so
forth.

4. Identifiers which appear as labels within the scope of
the * ENTER ASSEMBLER CODE* statement, which have as their
value the relocatable storage assignment of the
corresponding assembler code instruction.

5. All other identifiers have as their value the
relocatable storage assignment of the corresponding
identifier in the program.

Part II — User's Guide for MAD/I in MTS

174 Section 15: Assembler Coding Feature

The simplest of assembler code operands is one of the fear
types of expression operands described above. These expression
operands can also be combined into more complicated expressions.
These expressions can then be used as assembler code operands.
The operators which can be used in forming expressions are
described below:

1. The addition operator (+), can be used to add together
the values of two operands. The result is absolute if both
operands are absolut^. talflfiAJfelAlS i* either of the two
operands is relocatable. Meaningless values result if both
operands are reiogjjiäijlSi One must be very careful in
computing relocatable values, because the result may fall
outside of the area covered by the base register. For non-
structured modes, the entire storage assigned falls within
the base-area. For structured modes, only the first eight
bytes necessarily fall withxn the area. Calculations
involving storage assignments of executable code are
dangerous, because the compiler may begin a new base-area
at any point in an instruction sequence.

2. The pretix operator .LN. acceptr. as an operand an
identifier within the program or a constant symbol preceded
by an egual sign, and returns as its result an absolute
"value" which is the compile-time lentth of the storage
assigned to the operand.

Part II— Ustc's Guide für MAD/I in MT^

Section 15: Assembler Coding Feature 175

J5...2 Interface Conventions

The assembler code instructions written in the scope of the
•ENTER ASSEMBLER CODE' statement of course are located in the
larger environment of the code generated for all the statements
in the program. Certain conventions are followed in the machine
code generated by the HAD/I compiler and it is necessary for the
user to be aware of some of thorn, although many steps have been
taken to make these conventions as painless and transparent as
possible.

J[5A2A1 Entry jnto the 'ENTER ASgEflB^ER COpE'. gt^tement

The 'ENTER ASSEMBLER CODE* statement can be entered in two
ways, by "falling" into it under the normal sequencing rules of
the language or by branching to (or calling) the label on the
'ENTER ASSEMBLER CODE' statement. In either case the execution
of the assembler code within the statement begins with the first
instruction. It is not possible to enter the assembler language
code at any point other than its beginning. The following
operations are performed preceding the first assembler language
statement:

1. If the 'ENTER ASSEMBLER CODE' statement has a label, all the
usual code generated for a label is produced, including entry
point code if the label is of 'ENTRY POINT» mode.

2. All unstored values in both the floating-point and general
registers are stored into their respective variables.

3. All information concerning the contents of the registers :o

forgotten. This essentially makes all the floating-po
registers and all the general registers other than 12 and
available for use.

a. The 'COVER' and 'RESERVE' declarations within the scope of
the 'ENTER ASSEMBLER CODE* statement are processed in the order
in which they appear. For each general register reserved the
status of the register is changed to indicate that it cannot be
used by the compiler for any purpose. For each HAD/I identifier
or constant symbol covered, an available register is loaded with
a base to cover the variable and its status is changed to
indicate that it contains a base address and cannot be changed.

The result of these steps is that:

1. All floating-point registers are available for use by the
assembler code.

2. All general registers (except 12 and 13) are available for

Part II — User's Guide for MAD/I in MTS

176 Section 15: Assembler Coding Feature

use by the assembler code. General registers are reserved
explicitly and implicitly by the »RESEBVE« and •COVER1

declarations.

3. All general registers not reserved through «RESERVE' or
•COVER' are available to the compiler for use as base registers.

U. General register 12 contains a base register used by the
compiler to maintain addressability. It covers the area called
XBASETAB, which contains the values put into base registers.

5. General register 13 contains the address of the save area to
be used for calling other subroutines. This contains a back
pointer to the save area provided by the program which called
the 'PROCEDURE' containing the 'ENTER ASSEMBLER CODE' statement.
In calling another subroutine, it is necessary to increment and
decrement the stack information used by MAD/I programs (the
stack contains the save areas). This will be shown in one of
the examples in Section 15.3.

6. All variable values are located in memory and must be
referenced from memory. The fact that a variable value might
also be in a register cannot be taken advantage of from the
assembler code.

15.2.2 ExjLt.fyon %be 'EgXPR ASSEPBLEB CODE' Statement

The 'ENTER ASSEMBLER CODE* statement can be left in three
ways: by "falling" out of the bottom following the normal
sequencing conventions, by branching to a label or 'ENTRY NAME*
variable, or by calling an 'ENTRY POINT' or «ENTRY NAME«. In
each case there is no automatic storing of changed variable
values from the registers. It is entirely up to the user to
insure that all changed variable values are stored before the
'ENTER ASSEMBLER CODE' statement is exited. Furthermore, he
must follow all normal calling sequence conventions when calling
other subroutines, including the incrementing and decrementing
of stack information.

At the physical end of the scope of the 'ENTER ASSEMBLER
CODE' statement, all reserved registers are once again made
available to the compiler.

scr 73 Guiflo for :iAD/I in

Section 15: Assembler Coding Feature 177

J5A3 Examples

Below are several example 'ENTER ASSEMBLES CODE*
statements. In each example, some operation is performed which
cannot be adequately expressed in MAD/I. The examples attempt
to show the correct balance between the use of HAD/I and the use

*' of the assembler coding feature, with as much of the operation
as possible being expressed directly in HAD/I. An attempt has
been made to give useful examples that might indeed be used in
actual programs. Each example contains line numbers (which are
not a part of the actual code) and is followed by prose
explaining each line of the example.

I ;

15.3.1 Generating.a Standagd .OS Type (|) S Call
i

The HAD/I and standard OS type (I) S calling seguences
differ in the structure of the parameter list. This difference
in structure is transparent unless one is testing for variable-
length parameter lists. In the rtandard parameter list, the end
of the parameter list is indicated by having bit zero of the
last parameter address set to one. In MAD/I, on the other hand,
the number of parameters is specified in the word preceding the
parameter list. This example calls the subroutine F passing
three parameters. A, B, and C, following the standard calling
conventions. This example also illustrates the incrementing of

Ü the stack address, which is necessary if the subroutine F causes
a call on another subroutine written in HAD/I.

i

1 •DECLARE« F »EXTERNAL« «ENTRY POINT«;
2 «DECLARE« PASS «FIXED ARRAY« (3) «POINTER«;
3 «DECLARE« RTNCODE «INTEGER«;
i\ PÄRS(1) := .PT. A; PARS(2) := .PT. B; PARS (3) : =

^ .PT. C;
5 PARS (3) := PARS (3) .V. "80000000"X ;
6 «ENTER ASSEMBLER CODE«;

II 7 «RESERVE« 0,1,2,3,4,14,15;
8
9
10
11
12
13 X. -,4
15
16
17
18 «END«;

L 1|,XSTKADR;
LA 14,72(0,13)
LH 2,3,0(4);
STM 13,14,0(4);
LA 1,PARS;
LA 15,F;
BALR 14,15;
STM 2,3,0(4);
ST 15,RTNCODE;
STE 0,RESULT;

1 declares F to be «EXTERNAL« «ENTRY POINT«. This is done
implicitly in the normal MAD/I call (e.g., F.(A,B,C)).

Part II — üser«s Guide for MAD/I in MTS

-■•-.^$fl»-:.-

178 Section 15: Assembler Coding Feature

2 declares PABS to be an array with components of 'POINTER'
mode. The parameter list for the standard OS type (I) S calling
sequence will be built in PARS.

3 declares RTNCOOE to be of 'INTEGER* mode. The return code
from F vill be stored here.

4 puts the addresses of A, B, and C into the parameter list.

5 sets bit zero of the address of C in the parameter list to
one, to conform to the standard OS conventions. The parameter
list is now complete.

6 begins the 'ENTER ASSEMBLER CODE* statement.

7 reserves general registers 0, 1# 2, 3, U, 1*», and 15 which are
used in a standard calling sequence and in saving and restoring
the stack status.

8 loads the address of the stack information into general
register U. This is the first of the four instructions
necessary to increment the stack information to conform to MAE/I
stack conventions.

9 computes the current end of the stack.

10 saves the current two words of stack information in general
registers 2 and 3.

11 stores the two words of new stack information at the address
obtained in line 8.

12 loads the address of the parameter list into general register
1, to conform to standard calling sequence conventions.

13 loads the address of F into general register 15, to conform
to standard calling sequence conventions.

14 loads the return address into general register 14 and
branches to the entry point of F, according to standard calling
sequence conventions.

15 restores the two words of stack information saved at line 10.
This is the only instruction needed to decrement the stack.

16 stores the return code left by F from general register 15
into the variable RTNCCDE.

17 stores the floating-point result returned by F from floating-
point register 0 into the variable RESULT.

18 terminates the 'ENIEB ASSEMBLER CODE' statement.

fart II -- user's Guide for MAD/I in MTS

Section 15: Assembler Coding Feature 179

15. 3T? Generating a Standard OS..lyge [IJ B .Call

The standard OS type (I) R call passes parameter values in
the general registers rather than through a parameter list.
This type of call cannot be directly generated by any higher
level language, and yet it is useful because many HIS system
subroutines follow this calling convention. This example calls
the NTS system subroutine GETFD, which acguires a file or device
given the address of its EBCDIC name in general register one,
and returns the address of a control block called a FDUB in
general register zero. This address can be used in further I/O
operations on the file or device. In this example, the EBCDIC
name is assumed to be the value of the variable NAHE and the
FDUB address is stored in the variable FDUB. Note that the
stack information is not incremented. This is not necessary
because GETFD will not call any HAD/I procedure.

1 »DECLARE» GETFD »EXTERNAL» »ENTRY POINT«;
2 »DECLARE» FDUB »INTEGER»;
3 »DECLARE» RTNCODE »INTEGER»;
4 »DECLARE» NAME »CHARACTER»(80) ;
5 »ENTER ASSEMELER CODE»;
6 »RESERVE» 0,1,14,15;
7 LA 1,NAHE;
8 LA 15,GETFD;
9 BALE 14,15;
10 ST 15,RTNCODE;
11 ST 0,FPDB;
12 »END»;

1 declares GETFD to be »EXTERNAL» »ENTRY POINT». This is done
implicitly in the normal HAD/I call (e.g., GETFD.(NAME)).

2 declares FDUB to be of »INTEGER» mode. It actually does not
matter what mode it is, so long as it has length 4 and alignment
4.

3 declares RTNCODE to be of »INTEGER» mode. The return code
from GETFD will be stored here.

4 declares NAME to be of »CHARACTER»(80) mode. The name of the
file or device followed by at least one blank is assumed to be
here.

5 begins the »ENTER ASSEMBLER CODE» statement.

6 reserves general registers 0, 1, 14, and 15 which are used in
the calling seguence.

7 loads the address of the EBCDIC name into general register 1.

8 loads the address of the entry point to GETFD into general

Part II — user's Guide for MAD/I in MTS

180 Section 15: Assembler Coding Feature

register 15.

9 loads the return address into general register 14 and branches
to the entry point of 6ETFD.

10 stores the return code left by GETFD froi general register 15
into the variable RTNCODE.

11 stores the FDUB address returned by GETFD from general
register 0 into the variable FDUB.

12 terminates the «ENIER ASSEMBLER CODE* statement.

15.3.3 Tganslating,Lower-case Qharacters ^g_JtJBJtSI_£aSS

The System/360 has a powerful instruction (translate)
useful for translating from one character set encoding to
another. The desired translation is defined by a 256-kyte
translate table. MIS has several translate tables which can be
referenced as external symbols to perform common translations.
One of these is CASECONV, which converts all lower-case
alphabetic characters to upper-case alphabetic characters. The
following example converts any lower-case characters in the
variable STRING to. upper-case characters*

1 'DECLARE« CASECONV «EXTERNAL« «FIXED ABBAY«(256)
«CHARACTER« (1);

2 «DECLARE« STRING «CHARACTER« (80) ;
3 «ENTER ASSEMBLER CODE«;
U TR STRING (80) »CASECONV;
5 «END«;

1 declares CASECONV to be of «EXTERNAL« storage class. The
remainder of the declaration is not important unless CASECONV is
referenced in normal MAD/I code.

2 declares STRING, the character string to be translated, to he
of «CHARACTER«(80) mode.

3 begins the «ENTER ASSEMBLER CODE« statement.

a translates the characters of STRING using the translate tatle
CASECONV.

5 terminates the 'ENTER ASSEMBLER CODE« statement.

Part II - user's Guidf cor MAD/I in MTS

:.

Section 15: Assembler Coding Feature 181

ISJ. 31Ü. ^S^azgrt ina_an_llBIEfi££l_t o_ltejc^ flgg JUA-^flaglSIl

This exanple translates the •INTEGER* variable NOHBEfi into
a string of hexadecimal characters in the •CHARACTER» (8)
variable HEXOUT.

1 •DECIARE« NUMBER •INTEGER» •LENGTH» (5) ;
2 »DECLARE» HEXOÜT »CHARACTER» (8) ;
3 »DECLARE» WORK »CHARACTER» (9) ;
U »DECLARE» TAELE »FIXED ARRAY» (256) »CHARACTER» (1) ;
5 »PRESET» TABLE (241) := "O", «I»», "2", "a»', "«"^ "S»',

••e", M7Mf
M8M# "9", •»A", "B", MC,•, »»EMf "E",

jl "F";
6 »ENTER ASSEHBLER CODE»;
7 ONPK WORK (9) »NUMBER (5) ;
8 TR WORK (8)»TABLE;
9 MVC HEXO0T(8),HOBK;
10 »END»;

L 1 declares NUMBER to be of »INTEGER» »LENGTH» (5) mode. This
causes five bytes to be allocated to NUMBER, the first four
containing its value and the last being unused. This unused
byte is needed because of the idiosyncrasies of the UNPK
instruction with the low-order byte as pertains to this usage of

i, "•
2 declares HEXOUT to b€ of 'CHARACTER»(8) mode. The hexadecimal
character string result is left here.

il 3 declares WORK to be of »CHARACTER» (9) mode. This is a werk
area used during the conversion.

4 declares TABLE to be a »FIXED ARRAY» of »CHARACTER»(1)
components. This is the translate table which is referenced at
line 8.

h ** 5 presets the translate table appropriately.

6 begins the »ENTER ASSEHBLER CODE» statement.
mm

7 unpacks the four bytes of the value of NUMBER into the first
eight bytes of WORK. The four-bit values 0...F are expanded
into the eight-bit values F0...FF. The last byte of both NUMBER
and WORK are treated as the sign and low-order digit by the UNPK
instruction and are ignored by this algorithm.

i

L 8 translates the eight bytes of the result from the values
F0...FF to the appropriate EBCDIC character representation.

■"-

9 moves this result into the variable HEXOUT.

10 terminates the »ENTER ASSEMBLER CODE» statement.

JL,

Part II — User»s Guide for MAD/I in MTS

- v--v.J*^^- ■

182 Section 15: Assenbler Coding Feature

J5Jl3A5,JloviJ15-äli_l£bilIäII-üusl!er_2i_£l»iIi£iß£s

This exanple aoves £ characters ♦roi A(i)...A (i^n-l) to
B (1)... B (-j+n-l) , where A and B ere both fixed arrays of
•CHARACTER'(1) eleaents. It assumes that 1 < n < 256.

1 'DECLARE1 (A#E) 'FIXED ARRAY'(32768) 'CHARACTER' (1) ;
2 'DECLARE' (I,J,M) 'INTEGER';
3 'DECLARE' (PTA.PTB) 'POINTER';
«» PTA !=« .PT. A (I) ;
5 PTB := .PT. B(J) ;
6 'ENTER ASSEflELIR CODE';
7 'RESERVE' RLEN, RA, RB;
8 'LABEL' SKIP, EXTHIS;
9 B SKIP;
10 :EXTHIS HVC 0 (0,HB),0(RA);
11 :SKIP L RLEN,N;
12 L RA,PTA:
13 L RBfPTB;
la BCTR RLEN,0;
15 EX RLEH#EXTHIS;
16 'END';

1 declares A and B to be of 'FIXED ARRAY« (32768) «CHARACTER'(1)
mode.

I
2 declares I, J, and N to be of 'INTEGER' mode.

3 declares PTA and PTE to be of 'POINTER' mode.

U puts the address of A(i) into PTA.

5 puts the address of E(j) into PTB.

6 begins the »ENTER ASSEHBLER CODE' statement.
|

7 reserves three general-purpose registers named RLEN, RA, and
RB for use in this assembler code section.

8 declares two local labels, SKIP and EXTHIS.

9 branches to the next instruction to be executed. This
transfers around line 10 which will be the subject instruction
of an execute instruction.

10 is the subject, instruction of the e.cecute instruction of line
15. It perform? the actual move.

11 loads the nuaifcer of characters to be moved into register
HI.EN.

tart II -- (Jser's Quid fo^ MAD/I xn HTS i

I
I
I
I
1
• -

ii

Section 15: Assembler Coding Feature 183

12 loads the address of A(i) into register RA.

13 loads the address of B(j) into register EB.

14 subtracts one fro» the length, for the HVC instruction.

15 executes the HVC instruction to aove the n characters.

16 terminates the •ENTER ASSEMBLER CODE' statement.

J£xij.£ fisadiaa-££ojL-5£M£5-iB.tQ-» ..'.Y&ByiliG CflUASIMl-ifllÄaJ^S

This example reads a variable-length input record via the
NTS subroutine SCARDS and then sets up a 'VARYING CHARACTER'
variable so that it is the contents of the record that has been
read. It assuaes that the record read will have a length
greater than zero and less than 256.

1 'DECLARE' STRING • VARYING CHARACTER' (255);
2 'DECLARE* INAREA 'CHARACTER'(255);
3 'DECLARE' LEN 'INTEGER SHORT';
4 'DECLARE' LINNUHB 'INTEGER';
5 SCARDS.(INAREA#L£N#OfLINNUHB);
6 'ENTER ASSEMBLER CODE':
7 'RESERVE' RUN;
8 'COVER' STRING,INAREA;
9 'LABEL' SKIP,EXTHIS;
10 B SKIP;
11 :EXTHIS NVC STRING*2(0),INAREA;
12 :SKIP LH RLE »LEN;
13 STH RLEN,STRING;
14 BCTR RLEN,0;
15 EX RL£NVEXTHIS;
16 'END';

1 declares STRING to be of 'VARYING CHARACTER'(255) node.

2 declares INAREA to be of 'CHARACTER'(255) node.

3 declares LEN to be of 'INTEGER SHORT* lode.

4 declares LINNUHB to be of 'INTEGER' node.

5 reads the next record into INAREA, putting its length into LEN
and its line nuaber into LINNUHB.

6 begins the 'ENTER ASSEMBLER CODE' statement.

7 reserves a general-purpose register and naaes it RLEN.

Part II -- User's Guide for MAD/I in HTS

.-.■-...

184 Section 15: Assenblec Coding Feature

8 guarantees that the variables STRING and INAREA have fcase-
cegister coverage throughout the »ENTER ASSEMBLES CODE1

statement. This is necessary because these variables are
referenced by the HVC instruction of line 11 which is the
subject of the £X instruction of line 15.

9 declares two local labels, SKIP and EXTHIS.

10 branches to the next instruction to be executed. This
transfers around line 11 which is the subject instruction of the
execute instruction on line 15.

11 is the subject instruction of the execute instruction on line
15. It moves the contents of the string fron the input record
in the variable INAREA into the proper location within the
variable STRING.

12 loads the lenqth of the string into RLEN.

13 stores the length of the string into the proper area in
STRING.

1U subtracts one from the length, for the HVC instruction.

15 executes the HVC instruction to move the string into STRING.

16 terminates the «ENTER ASSEMBLER CODE1 statement.

user's Guide for HAt/I in «TS

1
I
I

Appendix A: Syntax Description Notation 185

APPENDICES

i££ejidix_Ai_Sjfntai_Notation

This notation is used to describe the syntax of HAD/I. It
does not describe the meaning of language elements but only the
syntax, e.g., the order of elements, punctuation, and options
that may occur. Note that this syntax notation is used for
describing HAD/I but is not itself part of the MAD/I language.

The following describes the syntax notation:

A notation variable is a name for a construction in the
HAD/I language. It may be formed by:

1) Lower-case letters and decimal digits and it must begin
with a letter.

2) A combination of lower- and upper-case letters and decimal
digits. There must be at least one portion in all lower-
case. Each portion is joined to the adjacent portions with
a hyphen.

Examples: expression
identifier
procedure-call
VALUE-statement

All notation variables are defined either in terms of this
syntax notation or in terms of English. If a notation variable
is defined with this syntax notation, the variable occurs to the
left of the definition operator = and the definition occurs to
the right.

Motation Conatmnt

A notation constant stands for the literal occurrence of
the characters composing the constant. A notation constant
consists of upper-case letters, digits, and special characters.
It say not consist of any lower-case letters.

Example: 'LENGTH*

This denotes the literal occurrence of the characters 'LENGTH' .

MAD/I Appendices

'.

186 Appendix A: Syntax Description Notation

Concatenation

When two or more notation elements ate written adjacent,
they denote an occurrence of the first element followed ty an
occurrence of the second element, and so on. Blank spaces
between notation elements have no significance.

Example: «LENGTH' (integer)

This denotes an occurrence of the literal characters 'LENGTH*
followed by a literal left-parenthesis, followed ty a
construction denoted by the notation variable "integer",
followed by a literal right-parenthesis.

Alternation |

The vertical bar | is used to indicate that a choice is
to be made.

Example:

storaqe-class = 'BASED' | 'STATIC | «AÜTOHATIC

This means that "storage-class" is defined to be either
•bA?ED' or 'STATIC or 'AUTOHATIC. Alternation has lower
precedence than conca .enation; e.g., x | y z means x | (y z) .

The braces {) may be used to denote grouping among
notation elements.

Example:

array = { 'FIXED ARRAY' | «VARIABLE ARRAY' } dimension

This is equivalent to

array * 'FIXED APRAY' dimension | «VARIABLE ARRAY« dimensxon

0£t ipMlity f 1

The ^ouaire bcdclcats [] are used to indicate that something
is optiona1. Hnatever is enclosed in square brackets either may
appt-jr or i-ay noi appear. In aidition, the brackets imply a
aroupino ot the fio'.aticnal elements enclosed within them.

Examrle: xower-bouna = [-] integer

«AD/I Appendices

:

Appendix A: Syntax Description Notation 187

This is equivalent to

lower-bound = - integer | integer

MB el it ion

the notation keyword list (which oust always be underlined)
■ay be used to represent a sequence of iteas. It «ay be
followed by either one or two notation expressions. If it has
one argumentr it stands for that argument occurring one or «ore
tines in succession.

I.e.,

list x is equivalent to x | xx | xxx | ...

If Ij-st is used with two arguments, it stands for a sequence of
one or sore of the second argument separated by occurrences of
the first argument. I.e.#

list x y is equivalent to y [li§t {x y)]

Example:

li§t , label

is equivalent to:

label | label,label | label,label,label |

The following precedence holds:

list x y is equivalent to { lisi x y }

and is not equivalent to { list x } y ;

list x y z is equivalent to { li§t x y) z

rather than list x { y z)

Ordet„Inde£endence «

The * notation is used where order is not important, i.e.,

x # y is equivalent to x y | y x

The # notation has higher precedence than either alternation or
concatenation; e.g.,

a b « c | d is equivalent to a (b « c } | d

HAD/I Appendices

188 Appendix B: Sumaary of Pre-defined Syibols

A£Beit(|lx_Bi_SagBa£3L.2lJE£Sz^efifigd Sljabois

SYJSboi Abbtevi&tioji Sestioaisi

iA-§19hQX§

•ACCESSIBLE« •ACC» 3.3
•ALIGN» 3.2.2
•ALLOCATE« 5.13
•ALTERNATE^ •ALT» 3.1.2.3
•AUTOMATIC 3.«».2
•EASED« 3.4.3
•BEGINS 5.10
•PIT« 3.1.1.6
«BLOCK« 6.10r 7.1
«BOOLEAN« •BOOL» 3.1.1.7
«CHARACTER» •C 3.1.1.8
•CLOSE« 6.9.1
•COMPONENT STRUCTURE^ •CS« 3.1.2.2
•COVER« 15.1.1
«DATA SET« 6.3.2
«DEALLOCATE« 5.13
«DECLARE« •DCL« 3.6.1, 5.9
•DECIABE CSECT« 5.12
•DECLARE DEFAULT^ »DCLD« 3.7.2, 5.9
•DECLARE PSECT« 5.12
•DEFAULT« 3.7.2
•ECHO« 6.4.6
•END' 5.0, 5.10
«END FOR« 5.1», 5.5
«END IF» 5.3
•END OF FILE^ •EOF« 6.4.2
•END OF VOLUME« •EOV« 6.4.3
•END PROCEDURE^ 5.7
•END SUBSTITUTE« «ENDSUB1 8.1
«END VALUE« . 5.6
•ENTER ASSEMBLER CODE^ 15.1
•ENTER FACILITY» 9
»ENTRIES« 6.3.4
•ENTRY NAME« «EN« 3.1.2.6
'ENTRY POINT» •EP« 3.1.2.5
»ERROR» 6.4.4
»ERROR EXIT' 4.2.7
»EXTERNAL» •EXT« 3.3
•FALSE« 3.1.1.7, 2.2.2
•FIL17 NA^E« 3.1.1.10, 6.1
•FIXED ARRAY» •FA^ 3.1.2.1.1
' FLOATING« •F' 3.1.1.3
'FLuATTNG LONG« »FL» 3.1.1.4
•FLOATING SHORT« •FS« 3.1.1.3
'FG?- 5.«

MAD/1 Appendices
:

J
1

Appendix B: Suamary of Pre-defined SynLols 189

•FOft VALUES' 5.5
•FOEMAT« 6.5.1
•GLOBAL« 3.3
•GO TO» 5.2
•IF« 5.3
•INCLUDE» 8.2
•INTEGEB« •1» 3.1.1.2
•INTEGEE LONG« •IL« 3.1.1.2
•INTEGEB SHOBT^ «IS« 3.1.1.1
•LABEL« 15. 1. 1
•LAST LENGTH« 6.5.«»
«LAST LINE« 6.5.3
•LENGTH« 3.2.1
«LINE« 6.5.2
•LIST« 6.7.5
•MAX LENGTH« 6.4.5
•NEH^ 3.3
•NOT NEIT 3.3
•NULL C« 3.1.1.8
•NULL £■• 3.1.2.6
•NULL PT^ 3.1.2.«
•NULL VC^ 3.1.1.9
•OPEN« 6.9.1
•OR ELSE^ «ELSE« 5.3
•OR IF« 5.3
«PACKED« •P« 3.1.1.5
«POINTER« •PT« 3.1.2.4
«POP SUBSTITUTE« 8.1
«PRESET« 5.11
«PROCEDURE« «PfiOC« 5.7, 7.1
«READ« 6.9.3, 6.9.4
•READ DATA« 6.9.2
«READ UNCONVERTED* 6.9.5
«REDIHENSION« 5.14
«RESERVE« 15. 1. 1
«RETURN« 5.7.3
«RETUBN TO« 5.7.3
«SAVE CODE« 4.2.7
«STATIC« 3.4.1
«STRING DATA SET« 6.3.3
«SUBSTITUTE« 8.1
«TO« 5.14
•TRANSFER POINT« 3.1.1.11
«TRUE« 3.1.1.7, 2.2.2
«UNIT« 6.3.1
«VALUE« 5.6
«VARYING ARRAY« «VA« 3.1.2.1.2
«VARYING CHARACTER« «VC 3.1.1.9
•WITH« 5.2
«WRITE« 6.9.3, 6.9.4
«WRITE DATA» 6.9.2
•WRITE UNCONVERTED' 6.9.5

HAD/I Appendices

190 Appendix E: SuiBacy of Pre-defined Salböls

Doti§d_sil^9l§

.AS.

.EXOP.

A it.2.U
'.ABS. «».2.1
.ALLOC. H.2.10
.AND, t'Z-l

3.9
.ASTYPE. 3.9

.ASTYPEOF. 3.9

.CONCAT. U.2.5

.CONV. U.2.5
.ENCON. 4.2.10
.EQV. 4.2.3
.FV. '»•2.4

4.2.3
.IND. 4.2.10
.LN. «.2.10
.LS. "»^.U
.LSA. ^'2^
.N. '».2.«»
.NB. 4.2.2
.NEG. 2.2.4, 4.2.1
.NOT. 4.2.3
.OB. «^.a
#pT. 4.2.10
.PTCON. 4.2.10
.REH. '».2«1

.RS. «.2.*»

.RSA. *.2,H

.TAG. 4.2.6

.THEN. 4.2.3

.V. ».2.4

MAD/I Appendices

J
I
1
:

Appendix B: Suaoary of Pre-defined Symbols

Specjal synbols (see also Section 2.1.7)

Punctuation symbols:

191

I

(left-parenthesis
) right-parenthesis
9 conna
•
t semicolon
• • colon 2.2.1.2, 3.7.1, 5.0
• • • ellipsis 3.1.2, 6.7.1
* pound-sign «4.2.6, 5.7.2

Operators: (see also Section 4.3 for precedences)

♦ plus a. 2.1
• minus 4.2.1
♦ asterisk 4.2.1
/ slash 4.2.1
♦ ♦ double-asterisk 4.2.1
= egual-sign 4.2.2
< less-than 4.2.2
> greater-than 4.2.2
-i= not-equal 4.2.2
<= less-than-or-equal 4.2.2
>= greater-t han-or-equal 4.2.5
a at-sign 3.6.3, 3.8
f dollar-sign 4.2.6
• dot, period 4.2.7, 3.7.1

■n not-sign 4.2.3
& ampersand 4.2.3
1 vertical bar 4.2.3
II double-bar 4.2.5

colon-eguals, assignment 4.2.9

Also, the tvo-character sequence
comment delimiter.

« is reserved for use as a

HAD/I Appendices

:

192 Appendix C: Current Restrictions & Possible Extensions

ÄEESfidix.Ci^Cüttent.ßestrictions^.^ossibie^jgitensions

lBplementatiS£_£t^tristions

The follovinq are current iipienentation restrictions.
They are coded by section number Mithin the manual.

lection Restriction

2.1.4.3 Pointer-constant symbols are not yet supported. The
same effect can be obtained through the
.PTCON. operator. See Section 4.2.10.

2.1.4.4 Entry-name-constant symbols are not jet supported.
The same effect can be obtained through the
.ENCON. operator. See Section 4.2.10.

2.2.5 The '•$" operator is not yet supported. Components can
be accessed by using the component name as if it were
a subscript; e.g., COMPLXN(iREAL) Instead of COMPLXN $
JREAL) .

3.1.2.2 See the restriction under Section 2.2.5 concerning the
•'S" operator.

3.4.2 Autonatic storage class is not yet supported.

4.2.1 The operator-i!>ode combinations which involve 'BIT'
mode as both the first and second operand modes are
not yet implemented.

4.2.4 The bit-string operations are not yet defined for
•BIT' mode.

4.2.5 The concatenation operation currently is not
implemented for «VARYING CHARACTER« mode.

4.2.6 The "$" operator is not yet implemented.

4.2.6 Substrinq selection is not yet implemented for
•VARYING CHARACTER« mode.

4.2.7 Thp phrase Kevvords «ERROR EXIT« and «SAVE CODE« are
not yet npiemented. Instead, the variable ÄRTNCCDE
contains the value of the last return code from the
last procedure called. %RTNCODE should be
ir.tertoqoted as soon as possible, since compiler-
qen^rat.ei subroutine calls (for I/O, subscription,
etc.) also molify its value.

A^L/1 Appendices

..

Appendix C: Current Restrictions & Possible Extensions 193

5.4 The 'FOR* stateoent cannot appear as an embedded
statement in the prefix part of another 'FCR'
statement or »FOR VALUES* statement.

5.6 The prefix «VALUE' V := E is not yet implemented. The
same effect can be obtained by: "VALUE1 V; V := E

5.7,2 The declaration of a formal parameter with an "array-
suffix** in which the "bounds** entries are the special
symbol # is not yet implemented.

5.14 The •REDIMENSION* statement is not yet implemented.

6.7.1 The elements of an array which are referenced in a
block-element must have a length equal *o tho "aligned
length" of an array component. See Section 3.1.2.1
for a discussion of aligned length. Hence given the
following declarations, only A can be referenced in a
block-element:

•DECLARE* A •FA*(10r15) «I»,
B »FA* (10,15) *ALIGH*(8) «I*,
C »FA* (10,15) ^LENGTH* (7) *I*

6.7.2 Array expressions are not yet supported in data-lists.

6.7.3 Component-structure expressions are not yet supported
in data-lists.

6.9.1 The 'OPEN* and •CLOSE* statements are not yet
implemented.

6.9.2 The data'directed input/output statements ('READ DATA*
and •WRITE DATA*) are not yet implemented.

6.9.3 List-directed input/output is not yet imple«ented.

6.9.4 Only a subset of format-directed input/output is
currently iiplemented. The I/O-spec-list must always
be specified. Its elements must be specified in
positional form. The first element is taken as the
format and is mandatory. The second element is
optional and is interpreted in the following ways:

(1) If it it. absent, the logical I/O unit SCARDS is
used for input; SPRINT for output.

(2) If the first byte is zero, it is taken as an
integer unit specification; that is, a
specification of logical I/O unit 0 through 9 or
a FDOB.

(3) In all other cases, it is taken as an FDname, and
must be terminated by a blank character.

HAD/I Appendices

■«9—

19M Appendix C: Current Restrictions 6 Possible Extensions

No other input/output specifications are allowed.

6.9.5 Unconverted input/output is not yet inpleaented.

7.1 The outeraost block lust be a procedure block;
prograas «ritten as conpound-stateaent blocks aay not
conpile.

15.1.2 Identifiers used as operands as discussed in (5) aust
belong to the outeraost block of the prograa.

los5ibie_Extei}sions

The tolloving are extensions to the HAD/I language and
nAü/I coapiler which are anticipated as future developaents.

S£cti«Ii ExEected_Eitfcnsions

3.1.1.8 The Baximum nuaber of characters allowed in
•CHABACTER' node values is expected to be increased to
32767. Lengths greater than 256 will cause
subroutines to be called when used as operands to aost
operations.

t).2.10 Operations conparable to the PL/I built-in functions
INDEX, TRANSLATE, and VERIFY are conteaplated.

6.7.1 Bxock-eleoents are expected to be defined across
cowponents within all the structured aodes, not just
the array modes.

7.3 Recursive procedures are conteaplated; such procedures
would require the declaration of a •RECURSIVE'
attribute.

«AD/I A^ondices

